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1 Definitions

In this paper, we will be working with rings and ideals of real analytic functions.
Given x ∈ Rd, let Ax be the ring of real-valued functions f : Rd → R that are
analytic at x. When x = 0 is the origin, it is useful to think of A0 as a subring
of the formal power series ring R[[ω1, . . . , ωd]] = R[[ω]] which consists of power
series which are convergent in some neighborhood of the origin. For all x ∈ Rd,
Ax is isomorphic to A0 via a translation. Given a subset Ω ⊂ Rd, let AΩ denote
the ring of real functions analytic at each point x ∈ Ω. Locally, each function
can be represented as a power series centered at x. Given f ∈ AΩ, we define the
analytic variety VΩ(f) = {ω ∈ Ω : f(ω) = 0} while for an ideal I ⊂ AΩ, we set
VΩ(I) to be the intersection of VΩ(f) over all f ∈ I. Let ∇f denote the gradient
of f and ∇2f its Hessian. Given a symmetric matrix A ∈ Rn×n, we write A � 0
if A is positive definite, and A � 0 if A is positive semidefinite.

Let Ω be a compact subset of Rd. Let us assume that Ω is semianalytic, i.e.
Ω = {x ∈ Rd : g1(x) ≥ 0, . . . , gl(x) ≥ 0} is defined by real analytic inequalities.
Here, the functions gi(x) only have to be real analytic at points on the boundary
where they are active. Let I = 〈f1, . . . , fr〉 be the ideal generated by functions
f1, . . . , fr in the ring AΩ. Let ϕ be nearly analytic, i.e. ϕ is a product ϕaϕs of
functions where ϕa is real analytic on Ω and ϕs is a smooth and positive on Ω.

Definition 1.1 ([4],[6, §7.1]). The following definitions of the real log canonical
threshold RLCTΩ(I;ϕ) = (λ, θ) are equivalent.

a. The Laplace integral

Z(N) =

∫
Ω

exp
(
−N

r∑
i=1

fi(ω)2
)
|ϕ(ω)| dω

is asymptotically CN−λ/2(logN)θ−1 for some constant C.

b. The zeta function

ζ(z) =

∫
Ω

( r∑
i=1

fi(ω)2
)−z/2

|ϕ(ω)| dω

has a smallest pole λ of multiplicity θ.
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c. The volume function

V (t) =

∫
∑r

i=1 fi(ω)2≤t
ϕ(ω)dω

is asymptotically C tλ/2(− log t)θ−1 for some constant C.

One can show that these definitions are independent of the choice of generators
f1, . . . , fr. If the variety VΩ(I) is empty, we set λ =∞ and leave θ undefined. We
define the real log canonical threshold RLCTΩ(f ;ϕ) of a real analytic function
f to be that of the principal ideal 〈f〉.

Two pairs are ordered (λ1, θ1) > (λ2, θ2) if λ1 > λ2, or λ1 = λ2 and θ1 < θ2.
For x ∈ Ω, we define RLCTΩx(I;ϕ) to be the threshold for a sufficiently small
neighborhood Ωx of x in Ω. Let RLCTx(I;ϕ) denote the threshold at x in the
absence of boundary conditions. We list some basic properties of RLCTs.

Proposition 1.2 ([4]). Let (λ, θ) = RLCTΩ(I;ϕ).

a. If VΩ(I) is not empty, then (λ, θ) ∈ Q×Z with 0 < λ ≤ d and 0 < θ ≤ d.

b. The pair (λ, θ) is the minimum

min
x∈Ω

RLCTΩx(I;ϕ).

In fact, it is enough to vary x over VΩ(I).

c. If ϕ = ϕaϕs as before, then RLCTΩ(I;ϕ) = RLCTΩ(I;ϕa).

d. Let x be a boundary point of Ω ⊂ Rd. Then,

RLCTx(f ;ϕ) ≤ RLCTΩx(f ;ϕ).

Proposition 1.3 ([5]). Let the minimum of a real analytic function f : Ω→ R
be f∗ and let W ⊂ Ω be a neighborhood of the minimum locus argmin f . Suppose
the restriction of f to W is the composition of real analytic maps

W
u //

f   A
AA

AA
AA

A U

g
��~~
~~
~~
~~

R

where U ⊂ Rk is a neighborhood of a point u∗ satisfying g(u∗) = f∗, ∇g(u∗) = 0
and ∇2g(u∗) � 0. If u = (u1, . . . , uk) and RLCTΩ(f − f∗;ϕ) = (λ, θ), then

(2λ, θ) = RLCTW (I;ϕ)

where I is the ideal 〈u1 − u∗1, . . . , uk − u∗k〉.
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2 Statistical Models

Let X be a random variable with state space X and ∆ be the space of probability
distributions on X . LetM be a statistical model parametrized by a real analytic
map p : Ω→ ∆ where Ω is a compact semianalytic subset of Rd. For each ω ∈ Ω,
we denote the corresponding probability density function by px(ω), x ∈ X . Let
ϕ : Ω→ R be nearly analytic, i.e. ϕ is a product ϕaϕs of functions where ϕa is
real analytic and ϕs is positive and smooth. We consider the prior on Ω defined
by |ϕ|. Given a distribution q ∈ ∆, we study the log loss function

`q(ω) = −
∫
X
qx log px(ω)dx.

Definition 2.1. The learning coefficient (λq, θq) is the pair of exponents coming
from the asymptotics of the Laplace integral

Z(N) =

∫
Ω

e−N`q(ω)|ϕ(ω)|dω ≈ Ce−N`
∗
N−λq (logN)θq−1

where `∗ is the minimum of `q over Ω and C > 0 is some constant. Consequently,
(λq, θq) is the real log canonical threshold RLCTΩ(`q − `∗;ϕ). We call the set
of points {ω ∈ Ω : `q(ω) = `∗} the q-locus of the model.

When q is the empirical distribution, the log loss function is the negative log
likelihood and the q-locus is the set of maximum likelihood estimates. If q is in
the model M, then the q-locus is just the fiber p−1(q) of the map p over q.

We say that M is regular at q ∈ ∆ if the log loss function `q(ω) is uniquely
minimized at some ω∗ ∈ Ω and if the Hessian ∇2`q(ω

∗) is positive definite.

Proposition 2.2. Suppose the map p : Ω→ ∆ of the modelM can be expressed
as the composition of real analytic maps

Ω
u //

p ��@
@@

@@
@@ Υ

p̃~~~~
~~
~~
~~

∆

with Υ ⊂ Rk and u = (u1, . . . , uk). If the model parametrized by p̃ is regular at
q ∈ ∆ with q-locus {u∗} and g maps the q-locus ofM onto u∗, then the learning
coefficient (λq, θq) of M at q is given by

(2λq, θq) = RLCTΩ(I;ϕ)

where I is the fiber ideal 〈u1 − u∗1, . . . , uk − u∗k〉.

Let X1, . . . , XN be independent and identically distributed samples of X.
The integrated likelihood of the data is the random variable

ZN =

∫
Ω

N∏
i=1

pXi(ω) |ϕ(ω)|dω.
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Note that ZN is the Laplace integral Z(N) when q is the empirical distribution.
Watanabe clarified the asymptotic behavior of ZN for large samples.

Theorem 2.3 ([6, §6]). Suppose the data is sampled from a distribution q ∈ ∆,
and let Ω, p, ϕ, q satisfy some mild conditions listed below. Then,

logZN =

N∑
i=1

log qXi − λq logN + (θq − 1) log logN +RN

where (λq, θq) is the learning coefficient of the model at q and the random vari-
able RN is asymptotically of constant order.

Watanabe refers to the restrictions on Ω, p, ϕ, q for the above theorem as the
Fundamental Conditions [6]. We list these conditions here for convenience. For
further discussions on the implications of these conditions and how they can be
relaxed, see §6.1, §6.2 and §7.8 of [6].

1. The parameter space Ω is compact and semianalytic, while the prior ϕ is
nearly analytic.

2. The true distribution q lies in the model M.

3. The distributions q and p have the same support, i.e. for any ω ∈ Ω, the
sets {x ∈ X : px(ω) > 0} and {x ∈ X : qx > 0} are equal up to closure.

4. The map fx(ω) = log(qx/px(ω)) extends to a complex analytic map fC on
an open set ΩC ⊂ Cd that contains Ω.

5. If Mx is the supremum of |fCx (ω)| over ΩC, then
∫
X M

2
xqxdx <∞.

6. There exists ε > 0 such that
∫
X M

2
xPxdx <∞ where Px is the supremum

of px(ω) over all ω satisfying `q(ω)− `∗ ≤ ε.

Given any statistical model, it is natural to explore the following questions.
First, the log loss function `q fails to be real analytic at ω when qx is nonzero and
px(ω) is zero for some x ∈ X . However, the integrand e−N`q(ω) approaches zero
near such points, so the Laplace integral Z(N) could still be well-defined. More-
over, the asymptotics of Z(N) depends only on the behavior of `q near its locus
of minimum points. This locus is far away from points where `q is non-analytic.
Given these considerations, what conditions do p and q have to satisfy in order
for learning coefficients to exist in Definition 2.1? Second, for which p and q does
Proposition 2.2 allow us to compute learning coefficients via real log canonical
thresholds of fiber ideals? Third, what do the fundamental conditions spell for
p and q so that we may use Theorem 2.3 in determining the asymptotics of the
integrated likelihood? We study these issues for discrete and Gaussian models.

Proposition 2.4. Let M be a discrete model parametrized by a real analytic
map p = (p1, . . . , pk) : Ω→ ∆ and let q ∈ ∆. If there exists ω ∈ Ω such that the
support of p(ω) contains that of q, then the learning coefficient (λq, θq) exists.
Otherwise, the Laplace integral Z(N) is identically zero so we may set λq =∞.
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Now, we assume q ∈M. If all the entries of q are nonzero, then the learning
coefficient (λq, θq) is half the RLCT of the fiber ideal. Otherwise,

(λq, θq) = RLCTΩ(
∑
i:qi 6=0

(pi(ω)− qi)2 − (pi(ω)− qi);ϕ).

Lastly, if q is the true distribution and all the entries of q are nonzero, then the
learning coefficient gives the asymptotics of the log integrated likelihood.

Proof. Most of the above claims are easy to check. We will focus on the displayed
formula and the last statement. Suppose some of the entries of q ∈M are zero.
Then, the q-locus is the variety {ω : p(ω) = q}. Using the Taylor expansion of
log t near t = 1, we get the inequality

c1(t− 1)2 ≤ − log t+ t− 1 ≤ c2(t− 1)2

for some positive constants c1, c2. After substituting t = pi/qi for each qi 6= 0,
multiplying by qi and summing up over all such i, we get∑

i

c1
qi

(pi(ω)− qi)2 ≤ `q(ω)− `∗ +
∑
i

pi(ω)− 1 ≤
∑
i

c2
qi

(pi(ω)− qi)2

Now, 1−
∑
i pi(ω) is always nonnegative. Therefore,

min
i

(
c1
qi
, 1) g(ω) ≤ `q(ω)− `∗ ≤ max

i
(
c2
qi
, 1) g(ω)

where g(ω) is the polynomial
∑
i(pi(ω)−qi)2− (pi(ω)−qi). Hence, the learning

coefficient is given by RLCTΩ(g;ϕ).
Now, suppose q is the true distribution. When all the entries of q are positive,

we may restrict our parameter space to

Ωε = {ω ∈ Ω : pi(ω) ≥ ε for all i}

For small ε > 0, the difference between the integrated likelihood over Ωε and
the integral over Ω is bounded for large N . One can verify that the fundamental
conditions for Theorem 2.3 are satisfied over Ωε. If some entries of q are zero,
then the set {w : p(ω) has the same support as q} does not form a neighborhood
of the variety {ω : p(ω) = q}, so Theorem 2.3 cannot be applied.

Proposition 2.5. Let M be a multivariate Gaussian model whose mean µ(ω)
and covariance Σ(ω) are parametrized by real analytic maps. Then, the learning
coefficient exists for all q whose mean µq and covariance Σq are well-defined.

Now, we assume q ∈M. Then, the learning coefficient (λq, θq) satisfies

(2λq, θq) = RLCTΩ(〈µ(ω)− µq,Σ(ω)− Σq〉;ϕ).

The learning coefficient also gives the asymptotics of the log integrated likelihood.
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Proof. For d-dimensional Gaussian models, the log loss function is

`q(µ,Σ) =
d

2
log 2π +

1

2
log det Σ +

1

2
tr Σ−1Eq[(X − µ)(X − µ)>]

where Eq be the expectation of the random variable X over the distribution q.
Hence, the learning coefficient exists for all distributions q whose mean µq and
covariance Σq are well-defined. Furthermore, Gaussian models are regular at all
such distributions q, so the learning coefficients are given by half the RLCTs of
the fiber ideals. Finally, it is easy to check that all the fundamental conditions
for Theorem 2.3 is satisfied for all q ∈M.

3 Disjoint Variables and Birational Maps

For the next few results, let f1, . . . , fr ∈ AX and g1, . . . , gs ∈ AY where X ⊂ Rm
and Y ⊂ Rn are compact semianalytic subsets. This occurs, for instance, when
the fi and gj are polynomials with disjoint sets of indeterminates {x1, . . . , xm}
and {y1, . . . , yn}. Let ϕx : X → R and ϕy : Y → R be nearly analytic. Define
(λx, θx) = RLCTX(f1, . . . , fr;ϕx) and (λy, θy) = RLCTY (g1, . . . , gs;ϕy).

By composing with projections X×Y → X and X×Y → Y , we may regard
the fi and gj as functions analytic over X×Y . Let Ix and Iy be ideals in AX×Y
generated by the fi and gj respectively. Recall that the sum Ix+Iy is generated
by all the fi and gj while the product IxIy is generated by figj for all i, j.

Proposition 3.1. The RLCTs for the sum and product of ideals Ix and Iy are

RLCTX×Y (Ix + Iy;ϕxϕy) = (λx + λy, θx + θy − 1),

RLCTX×Y (IxIy;ϕxϕy) =

 (λx, θx) if λx < λy,
(λy, θy) if λx > λy,
(λx, θx + θy) if λx = λy.

Our last property tells us the behavior of RLCTs under a change of variables.
Consider an ideal I ⊂ AW where W is a neighborhood of the origin. Let M be
a real analytic manifold and ρ : M →W a proper real analytic map. Then, the
pullback ρ∗I = {f ◦ ρ : f ∈ I} is an ideal of real analytic functions on M . If ρ
is an isomorphism between M \ V(ρ∗I) and W \ V(I), we say that ρ is a change
of variables away from V(I). Let |ρ′| denote the Jacobian determinant of ρ. We
call (ρ∗I; (ϕ ◦ ρ)|ρ′|) the pullback pair.

Proposition 3.2. Let W be a neighborhood of the origin and I ⊂ AW a finitely
generated ideal. If M is a real analytic manifold, ρ : M → W is a change of
variables away from V(I) and M = ρ−1(Ω ∩W ), then

RLCTΩ0
(I;ϕ) = min

x∈ρ−1(0)
RLCTMx

(ρ∗I; (ϕ ◦ ρ)|ρ′|).

Proposition 3.3. Given a compact semianalytic set Ω ⊂ Rd and a real analytic
map u : Ω→ Υ, let ρ : M→ Ω be an analytic isomorphism. Then for all u∗ ∈ Υ,

RLCTΩ(〈u(ω)− u∗〉;ϕ) = RLCTM(〈uρ(µ)− u∗〉;ϕρ).
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Proof. Follows from Proposition 3.8 of [4].

Proposition 3.4. Given a compact semianalytic set Ω ⊂ Rd and a real analytic
map u : Ω→ Υ, let ρ : Υ→M be an analytic isomorphism. Then for all u∗ ∈ Υ,

RLCTΩ(〈u(ω)− u∗〉;ϕ) = RLCTΩ(〈ρu(ω)− ρ(u∗)〉;ϕ).

Proof. Consider the following commutative diagram of maps

Ω
u //

f
&&MM

MMM
MMM

MMM
M Υ

g

��

ρ //M

h
wwppp

ppp
ppp

ppp

R
where the sets Υ and M are k-dimensional and

f(ω) =
∑k
i=1(ui(ω)− u∗i )2,

g(u) =
∑k
i=1(ui − u∗i )2,

h(µ) =
∑k
i=1(ρ−1

i (µ)− u∗i )2.

Then, the real log canonical threshold of 〈u(ω)−u∗〉 is twice that of f(ω). Using
Proposition 1.3, we can prove that the RLCT of 〈ρu(ω) − ρ(u∗)〉 is also twice
that of f(ω) if we can verify that h is uniquely minimized at ρ(u∗) and that the
Hessian at ρ(u∗) is positive definite. The first claim comes from the fact that h is
minimized when ρ−1(µ) = u∗. For the second claim, we check that the Hessian
is 2A>A where A is the Jacobian matrix of ρ−1 and A is full rank.

4 Newton Polyhedra

Given an analytic function f ∈ A0(Rd), we pick local coordinates {w1, . . . , wd}
in a neighborhood of the origin. This allows us to represent f as a power series∑
α cαω

α where ω = (ω1, . . . , ωd) and each α = (α1, . . . , αd) ∈ Nd. Let [ωα]f
denote the coefficient cα of ωα in this expansion. Define its Newton polyhedron
P(f) ⊂ Rd to be the convex hull

P(f) = conv {α+ α′ : [ωα]f 6= 0, α′ ∈ Rd≥0}.

A subset γ ⊂ P(f) is a face if there exists β ∈ Rd such that

γ = {α ∈ P(f) : 〈α, β〉 ≤ 〈α′, β〉 for all α′ ∈ P(f)}.

where 〈 , 〉 is the standard dot product. Now, given a compact subset γ ⊂ Rd,
define the face polynomial

fγ =
∑
α∈γ

cαω
α.

Recall that fγ is singular at a point x ∈ Rd if ordxf ≥ 2, i.e.

fγ(x) =
∂fγ
∂ω1

(x) = · · · = ∂fγ
∂ωd

(x) = 0.
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We say that f is nondegenerate if fγ is non-singular at all points in the torus
(R∗)d for all compact faces γ of P(f); otherwise we say f is degenerate.

We now extend the above notions to ideals. For any ideal I ⊂ A0, define

P(I) = conv {α ∈ Rd : [ωα]f 6= 0 for some f ∈ I}.

Related to this geometric construction is the monomial ideal

mon(I) = 〈ωα : [ωα]f 6= 0 for some f ∈ I〉.

Note that I and mon(I) have the same Newton polyhedron, and if I is generated
by f1, . . . , fr, then mon(I) is generated by monomials ωα appearing in the fi.
One consequence is that P(f2

1 + · · ·+f2
r ) is the scaled polyhedron 2P(I). Given

a compact subset γ ⊂ Rd, define the face ideal

Iγ = 〈fγ : f ∈ I〉.

The next result tells us how to compute Iγ for an ideal I = 〈f1, . . . , fr〉.
Proposition 4.1. For all compact faces γ ∈ P(I), Iγ = 〈f1γ , . . . , frγ〉.

Lastly, we give several equivalent definitions of nondegeneracy for ideals. If
an ideal I satisfies these conditions, then we say that I is sos-nondegenerate,
where sos stands for sum-of-squares. Note that the nondegeneracy of a function
f need not imply the sos-nondegeneracy of the ideal 〈f〉, e.g. f = x+ y.

Proposition 4.2. Let I ⊂ A0 be an ideal. The following are equivalent:

1. For some generating set {f1, . . . , fr} for I, f2
1 + · · ·+f2

r is nondegenerate.

2. For all generating sets {f1, . . . , fr} for I, f2
1 + · · ·+ f2

r is nondegenerate.

3. For all compact faces γ ⊂ P(I), the variety V(Iγ) ⊂ Rd does not intersect
the torus (R∗)d.

Given a polyhedron P ⊂ Rd and a vector τ = (τ1, . . . , τd) of non-negative
integers, let the τ -distance lτ be the smallest t ≥ 0 such that t(τ1+1, . . . , τd+1) ∈
P and let the multiplicity θτ be the codimension of the face at this intersection.

Theorem 4.3. Let the function f : Ω→ R be real analytic at the origin. If f is
nondegenerate and has a minimum at 0, then RLCT0(f ;ωτ ) = (1/lτ , θτ ) where
lτ is the τ -distance of P(f) and θτ its multiplicity.

Monomial ideals play in special role in the theory of real log canonical thresh-
olds of ideals. The proof of this next result is due to Piotr Zwiernik.

Proposition 4.4. Monomial ideals are sos-nondegenerate.

Theorem 4.5. Let I be a finitely generated ideal in the ring of functions which
are real analytic on Ω, and suppose the origin 0 lies in the interior of Ω. Then,
for every sufficiently small neighborhood Ω0 of the origin,

RLCTΩ0
(I;ωτ ) ≤ (1/lτ , θτ )

where lτ is the τ -distance of the Newton polyhedron P(I) and θτ its multiplicity.
Equality occurs when I is monomial or, more generally, sos-nondegenerate.
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5 Regular Parameters

Let I ⊂ R[x1, . . . , xd] be an ideal. Recall that the variety Y = V(I) is regular
at a point p if the rank of the Jacobian matrix (∂fi/∂xJ) is the codimension of
Y at p. Equivalently, Y is regular at p if the local ring OY,p is regular.

Theorem 5.1. If Y is regular at a point p, then the RLCT of I at p is (r, 1)
where r is the codimension of Y in Rn.

Proof. Without loss of generality, let us assume that p is the origin. Let the
ring R be the localization of R[x1, . . . , xd] at the origin. By Theorem 8.17 of
Hartshorne, the ideal IR is generated by r elements f1, . . . , fr in R. Because
the Jacobian matrix (∂fi/∂x̄j) has rank r, the set {fi} may be extended to a set
of local coordinates at the origin. In these coordinates, we see that the RLCT
of the ideal I = 〈f1, . . . , fr〉 is (r, 1).

Remark 5.2. Compare this to Watanabe’s theorem in his book about the
RLCT being the codimension if the variety is locally isomorphic to a linear
subspace. His theorem gives a geometric condition, while ours gives an algebraic
condition. With this theorem, the RLCT at regular points are easily computed.
As for points in the singular locus, we will need to do more analysis.

6 Working with Boundaries

These results are stated and proved in [3].

Lemma 6.1. Given a compact semialgebraic set Ω and an ideal I in the ring
of real analytic functions over Ω, let M be the locus of points x in Ω where
the boundary-less local RLCTx(I) is minimized. Let (λ, θ) be this minimum
RLCT. Then, the RLCT of I over Ω is lower bounded by (λ, θ). If M is not
contained in the boundary of Ω, then this RLCT is precisely (λ, θ).

Lemma 6.2. Let Ω be a compact semialgebraic set where the origin is in the
interior of Ω. Then, the RLCT of any monomial ideal I over Ω is given by the
RLCT at the origin, i.e. we may use the Newton polyhedra method to compute
the RLCT.

Lemma 6.3 (Localization). Let Ω be a compact semialgebraic set, R the ring
of real analytic functions over Ω and I an ideal in R. Given any multiplication
subset S of R, let IS be the localization of I in the local ring RS (in other words,
all elements of S become units in the ideal I). Let V be the variety defined by
I, and U be the set of points x in Ω such that s(x) is nonzero for all s in S.
Then, RLCTΩI = min(a, b) where

a = min
x∈U

RLCTΩx
IS ,

b = min
x∈V \U

RLCTΩxI.
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Lemma 6.3 has some interesting corollaries. First, if we let S be the com-
plement of a maximal ideal of a point u in Ω, then U = {u} and RS is the local
ring of the point u. Second, if we let S be the set of functions that do not vanish
anywhere on V(I), then V \ U is the empty set so RLCTΩI = RLCTΩIS . This
can be used to in our Gaussian trees problem to separate the variables into the
two sets we talked about. Third, if we let S be the complement of the prime
ideal of an irreducible component of V , then U is this irreducible component so
we can compute RLCTs at points on U and at points not on U . If our variety V
is simple normal crossing, we can use this trick to localize components away to
get monomial ideals and then apply Lemma 6.2 to prove that our favorite point
is the deepest singularity. This last idea can be useful for hyperplane arrange-
ments. More generally, if we can have candidate for the deepest singularity, we
can localize unimportant components away and then perform a blowup. Now,
repeat this localization and blowup process again till we get our desired RLCT.
After which, we can backtrack this process to find the region where the original
candidate point was a deepest singularity.

7 Linear and Monomial Maps

In this section, we study semianalytic subsets Ω ⊂ Rd which are not necessarily
compact. We define RLCTΩ(I;ϕ) of an ideal I with respect to a function ϕ to be
the minimum of local thresholds RLCTΩx

(I;ϕ) over all x ∈ Ω, if this minimum
exists. We say that Ω is a product of intervals if Ω = [a1, b1]×[a2, b2]×· · ·×[ad, bd]
where each ai, bi ∈ R ∪ {−∞,∞}. Here, Ω need not be compact.

These results are also stated and proved in [3].

Lemma 7.1. If the subset Ω ⊂ Rd is a product of intervals, then the RLCT of
any monomial ideal I over Ω is given by the RLCT at the origin.

We say an ideal I ⊂ R[ω1, . . . , ωd] is linear if it is generated by degree one
polynomials. If Ω is a product of intervals, then the variety VΩ(I) is a polyhedron
in Rd. If a polyhedron P is the empty set, we define its codimension to be ∞.

Proposition 7.2. Let I be a linear ideal and Ω a product of intervals. Then,

RLCTΩ(I; 1) = (codimVΩ(I), 1).

Example 7.3. Let Ω = [0,∞) × [0,∞) ⊂ R2 and consider the linear ideals
I1 = 〈x − y〉 and I2 = 〈x + y〉 and their corresponding varieties V1 and V2.
Both varieties are codimension one in R2. However, in the orthant Ω, V1 has
codimension one while V2 has codimension two. Therefore, RLCTΩ(I1; 1) =
(1, 1) but RLCTΩ(I2; 1) = (2, 1).

Proposition 7.4. Given a product of intervals Ω ⊂ Rd, let f : Ω→ Rn be the
monomial map f(ω) = ωv, i.e.

fi(ω) = ωv1i1 ωv2i2 · · ·ωvdid , for 1 ≤ i ≤ n
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and let ϕ : Ω → R be a monomial function ϕ(ω) = ωτ . Given u∗ ∈ f(Ω),
suppose u∗1, . . . , u

∗
r are the nonzero entries of u∗, and suppose also that ω1, . . . , ωs

are the parameters appearing in the monomials f1(ω), . . . , fr(ω). Let I1 be the
ideal generated by binomials

ωv1i1 ωv2i2 · · ·ωvsis − u∗i , for 1 ≤ i ≤ r

and I0 be generated by the monomials

ω
v(s+1)i

s+1 ω
v(s+2)i

s+2 · · ·ωvdid , for r + 1 ≤ i ≤ n.

Let τ0 = (τs+1, . . . , τd) and Ω = W1 ×W0 ⊂ Rs × Rd−s. Then,

RLCTΩ(〈f(ω)− u∗〉;ϕ) = (codimVW1(I1) + 1/lτ0 , θτ0)

where lτ0 is the τ0-distance of the polyhedron P(I0) and θτ0 its multiplicity.

8 Normalized Models

These results are not yet published.

Lemma 8.1. Given a discrete model with probabilities pi(ω) = fi(ω)/Z(ω)
where i varies over {1, ..., k}, the fi(ω) are polynomials and the normalization
factor Z(ω) =

∑
i fi(ω) is positive over all points ω in the parameter space Ω.

Then the learning coefficient of the model over the true distribution p(ω∗) is
half the RLCT of the ideal generated by the two-by-two minors of the matrix(

f1(w) f2(w) · · · fk(w)
f1(w∗) f2(w∗) · · · fk(w∗)

)
.

Proof. By Proposition 2.4, the learning coefficient of this discrete model is half
the RLCT of the ideal I = 〈p(ω)−p(ω∗)〉. We claim that this ideal is generated
by the minors described above. Treating the fi as indeterminates, I is the ideal
of vectors in Rk which are parallel to (f1(ω∗), . . . , fk(ω∗)). This occurs if and
only if the above matrix is rank one, and the result follows.

The next lemma is due to Aoyagi [1, Lemma 7].

Lemma 8.2. Assume the situation in Lemma 8.1 and suppose that for each i,
we have fi(ω) = egi(ω) for some real analytic functions gi(ω). Then the learning
coefficient of the model over the true distribution p(ω∗) is half the RLCT of the
ideal generated by

[gi(ω)− gi(ω∗)]− [gj(ω)− gj(ω∗)]

where i, j varies over all distinct pairs in {1, . . . , k}.
Proof. We give an alternative proof. The functions fi(ω) are positive and thus
invertible over Ω so the ideal generated by minors in Lemma 8.1 is equal to〈f2(ω)

f1(ω)
− f2(ω∗)

f1(ω∗)
,
f3(ω)

f1(ω)
− f3(ω∗)

f1(ω∗)
, . . . ,

fk(ω)

f1(ω)
− fk(ω∗)

f1(ω∗)

〉
.

We now apply Proposition 3.4 using the log function and the result follows.
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9 Counterexamples

Example 9.1. When the boundary near a point x is a smooth hypersurface,
the RLCT is not necessarily equal to the boundaryless RLCT.

Let f = y− x2 and Ω = {y ≤ 0}. We compute the RLCT of f at the origin.
Ignoring the boundary, since f is smooth at the origin, the RLCT of f is (1, 1).
Now, considering the boundary, we need to blowup the origin.

Chart 1: x = x1y1, y = y1. Here, f = y1(1−x2
1y1) so the strict transform does

not intersect the exceptional divisor in this chart, giving RLCT(y1; y1) = (2, 1).

Chart 2: x = x1, y = x1y1. Here, f = x1(y1 − x1) so the strict transform in-
tersects the exceptional divisor at the origin and Ω is the union of the orthants
{x1 ≤ 0, y1 ≥ 0} and {x1 ≥ 0, y1 ≤ 0}. We blow up the origin once more.

Chart 2.1: x1 = x2, y1 = x2y2. Here, f = x2
2(y2 − 1) and Ω = {y2 ≤ 0}. The

strict transform does not intersect the exceptional divisor in Ω so the RLCT is
just that of the exceptional divisor which is RLCT(x2

2;x2
2) = (3/2, 1).

Chart 2.2: x1 = x2y2, y1 = y2. Here, f = x2y
2
2(1 − x2) and Ω = {x2 ≤ 0}.

Again, the strict transform does not intersect the exceptional divisor in Ω so
the RLCT is given by RLCT(x2y

2
2 ;x2y

2
2) = (3/2, 1).

Thus, we see that even though Ω is a half-space near the origin, the RLCT
is (3/2, 1) which is different from the boundaryless RLCT (1, 1).

Example 9.2. Proposition 2.7 and Lemma 2.8 of [9]. I think Lemma 2.8 may
not be entirely correct when the point is at the boundary.

Let f = x2 + y2 and Ω = {y2 − x3 < 0, x2 + y2 < ε}. The fiber F is the
origin. I want to show that the RLCT is strictly more than 1. Blow up the
origin in the plane.

Chart 1: x = x1y1, y = y1. Here, the proper transform of F is {y1 = 0} while
the proper transform of Ω is {1− x3

1y1 < 0} which does not intersect the fiber.

Chart 2: x = x1, y = x1y1. Here, F is {x1 = 0} while Ω is the parabolic region
{y2

1 − x1 < 0}. They intersect at the origin. Thus, f is equivalent to x2
1 while

the Jacobian determinant is J = x1. Blow up the origin in the plane.

Chart 2.1: x1 = x2y2, y1 = y2. Here, F is the union of the axes {x2 =
0 or y2 = 0} while Ω = {y2

2 − x2y2 < 0}. They intersect at {x2 = 0}. Also,
f = x2

2y
2
2 and J = x2y

2
2 . Along every point but the origin, f is equivalent to x2

2

so the RLCT is (3/2, 1). At the origin, we blow up again.

Chart 2.1.1: x2 = x3y3, y2 = y3. All interesting points covered in Chart 2.1.2.
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Chart 2.1.2: x2 = x3, y2 = x3y3. Covers all points except {x2 = 0, y2 6= 0}.
Here, F is the union of the axes while Ω = {0 ≤ y3 ≤ 1}. All points have higher
or equal RLCT than the origin. At the origin, we have f = x4

3y
2
3 and J = x4

3y
2
3

so the RLCT is (5/4, 1).

Chart 2.2: x1 = x2, y1 = x2y2. Here, F is {x2 = 0} while Ω is {x2(x2y
2
2−1) ≤

0}. The only point we did consider in the other charts is the origin. Here,
f = x2

2 while J = x2
2, so the RLCT is (3/2, 1).

Therefore, the RLCT in this boundary example is (5/4, 1).

10 Miscellaneous

Other Results

1. removing units: primary decomposition, Mora’s algorithm

2. simplifying regular parameters

3. binomial ideals

4. homogeneous ideals

Counterexamples

1. nonreduced varieties

2. boundaries

Remark 10.1. When we do a blowup, the charts overlap so we could end up
analyzing the same point in different charts. It is useful to consider the points
in one chart that is not in any of the other charts. We call these points essential.
One way is to keep track of the points we have done, and strike them off when
we encounter them again in a later chart. Another way is to study the geometry
of the variety before blowing up. The variety intersects the essential points in
one chart if it is tangent to the image of these essential points before the blowup.

If the variety of the ideal is completely contained in the boundary, I think we
can also say something about the RLCT? Example to try is the cusp reversed
and the positive orthant. Not really. Need to resolve the singularities first, then
see which points the bounded region picks out.
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