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Abstract

Algebraic Methods for Evaluating Integrals
in Bayesian Statistics

by

Shaowei Lin

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Bernd Sturmfels, Chair

The accurate evaluation of marginal likelihood integrals is a difficult fundamental problem in
Bayesian inference that has important applications in machine learning and computational
biology. Following the recent success of algebraic statistics [16,41,43] in frequentist inference
and inspired by Watanabe’s foundational approach to singular learning theory [58], the goal
of this dissertation is to study algebraic, geometric and combinatorial methods for computing
Bayesian integrals effectively, and to explore the rich mathematical theories that arise in this
connection between statistics and algebraic geometry. For these integrals, we investigate their
exact evaluation for small samples and their asymptotics for large samples.

According to Watanabe, the key to understanding singular models lies in desingularizing
the Kullback-Leibler function K(ω) of the model at the true distribution. This step puts the
model in a standard form so that various central limit theorems can be applied. While general
algorithms exist for desingularizing any analytic function, applying them to non-polynomial
functions such as K(ω) can be computationally expensive. Many singular models are however
represented as regular models whose parameters are polynomial functions of new parameters.
Discrete models and multivariate Gaussian models are all examples. We call them regularly
parametrized models. One of our main contributions is showing how this polynomiality can
be exploited by defining fiber ideals for singular models and relating the properties of these
algebraic objects to the statistics. In particular, we prove that a model is put in standard
form if we monomialize the corresponding fiber ideal. As a corollary, the learning coefficient
of a model is equal to the real log canonical threshold (RLCT) of the fiber ideal.

While complex log canonical thresholds are well-studied in algebraic geometry, little is
known about their real analogs. In Chapter 4, we prove their fundamental properties and
simple rules of computation. We also extend Varchenko’s notion [54] of Newton polyhedra
and nondegeneracy for functions to ideals. Using these methods, we discover a formula for
the RLCT of a monomial ideal with respect to a monomial amplitude. For all other ideals,
this formula is an upper bound for their RLCT. Our tools are then applied to a difficult
statistical example involving a näıve Bayesian network with two ternary random variables.
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Because our statistical models are defined over compact semianalytic parameter spaces
Ω, we need to extend standard asymptotic theory [3] of real analytic functions over neigh-
borhoods of the origin to functions over domains like Ω. Chapter 3 summarizes these results
which are critical for other proofs in this dissertation. We also give explicit formulas for the
full asymptotic expansion of a Laplace integral over Ω in terms of the Laurent coefficients
of the associated zeta function. In Chapter 5, we apply these formulas to Laplace integrals
Z(n) with nondegenerate phase functions, and describe algorithms for computing the coeffi-
cient C in the first term asymptotics Z(n) ≈ Cn−λ(log n)θ−1. Procedures for calculating all
higher order coefficients are also developed and explained.

Watanabe’s treatment of singular models assumes knowledge of the true distribution. In
this dissertation, we also explore marginal likelihood integrals of exponential families given
data where the true distribution is unknown. This is the context in which Schwarz [48],
Haughton [27] and Geiger and Rusakov [45] studied the Bayesian Information Criterion
(BIC). We find here that the log likelihood ratio of the data is equal to the Kullback-Leibler
function of the model at the maximum likelihood distribution. Therefore, all the methods
we developed for Kullback-Leibler functions apply, so we describe how to compute the full
asymptotics of the marginal likelihood integral by monomializing the associated fiber ideal.

Lastly, to complement developments in asymptotic estimation as well as in Markov Chain
Monte Carlo (MCMC) estimation, we present, in Chapter 2, symbolic algorithms for comput-
ing marginal likelihood integrals exactly for discrete data of small samples. The underlying
statistical models are mixtures of independent distributions, or, in geometric language, secant
varieties of Segre-Veronese varieties. For these models, the numerical value of the integral
is a rational number, and exact evaluation means computing that rational number rather
than a floating point approximation. These exact results provide a gold standard with which
approximation methods can be compared.
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Chapter 1

Integrals in Bayesian Statistics

Bayesian statistics is foundational in applications such as machine learning and compu-
tational biology. A fundamental problem in Bayesian statistics is the accurate evaluation of
integrals. This chapter is an introduction to some of the theory that has developed around
this problem, and a summary of the major contributions in this dissertation. As a start, in
Section 1.1, we survey some of the integrals which arise in this field, while in Section 1.4 we
review some important classes of models used in this dissertation.

We will primarily be interested in two kinds of integrals. The first has the form∫
Ω

p1(ω)u1 · · · pk(ω)ukdω

where Ω ⊂ Rd is a polytope, the pi(ω) are polynomials in ω = (ω1, . . . , ωd) and the ui are
integers. In Chapter 2, we study efficient algorithms for computing this integral exactly for
a special class of discrete statistical models.

The second kind of integrals has the form

Z(n) =

∫
Ω

e−nf(ω)ϕ(ω)dω

where Ω ⊂ Rd is a compact semianalytic subset, and f(ω) and ϕ(ω) are real analytic func-
tions. We will be interested in estimating this integral for large n, where n usually refers to
the sample size. The asymptotics of such integrals is well understood for regular statistical
models, but little was known for singular models until a breakthrough in 2001 due to Sumio
Watanabe [57]. His insight was to put the model in a suitable standard form by employing
the technique of resolution of singularities from algebraic geometry. To this standard form,
various central limit theorems can be applied. We briefly describe the basic ideas behind his
results in Sections 1.2 and 1.3.

Watanabe’s work provided the theoretical foundation for understanding singular models,
but applying this theory proved to be challenging computationally. The main difficulty lies
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in finding resolutions of singularities for Kullback-Leibler functions which are real analytic
log integrals. Our largest contribution to these developments is providing effective algebraic
tools for this computation. We show that for a very general class of models known as regularly
parametrized models, instead of desingularizing the Kullback-Leibler function, we only need
to monomialize an associated ideal of polynomials called the fiber ideal. Parametrized discrete
models, multivariate Gaussian models and graphical models are all examples of regularly
parametrized models, so our methods are widely applicable. We summarize our main results
in Section 1.5. We show that the learning coefficient of a model equals the real log canonical
threshold of the fiber ideal. Through this exploration, we uncover many algebraic, geometric
and combinatorial results which are interesting mathematically in their own right.

In studying singular models, Watanabe was primarily interested in their behavior for
large sample sizes while assuming knowledge of the true distribution. For instance, in one
of his main theorems, he computes the asymptotics of the expected log marginal likelihood
integral. Meanwhile, in many practical situations, the true distribution is unknown but we
are given large-sample data and we want to estimate the corresponding marginal likelihood
integral. In Section 1.6, we study this scenario for exponential families and show that their
marginal likelihood integrals have a connection to Kullback-Leibler functions of models over
some true distribution. This allows us to apply our results from Section 1.5. In particular,
we prove that for regularly parametrized models, under some conditions, the asymptotics
of their likelihood integrals can be computed by monomializing the associated fiber ideals.
Using this approach, we will be able to compute higher order asymptotics of the integrals,
using formulas from Chapter 5.

1.1 Model Selection

The fundamental problem in statistical learning theory is choosing a statistical model that
best describes the given data. More precisely, let X be a random variable with state space
X , and let x1, x2, . . . , xN be N independent random samples of X. A statistical model M on
X is a family of probability distributions on X parametrized by a space Ω. The distribution
corresponding to ω ∈ Ω is denoted by p(x|ω,M)dx. In this dissertation, X will either be a
discrete space [k] := {1, 2, . . . , k} or a real vector space Rk, while Ω will be compact subset of
Rd. Now, given the data x1, . . . , xN , we select the “best” model by computing a criterion or
score for each model, and picking the model that maximizes this criterion. Different criteria
exist for different frameworks and purposes. We examine some important ones below.
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1.1.1 Maximum Likelihood

The frequentist approach is to compute the maximum likelihood

max
ω∈Ω

p(x1, . . . , xN |ω,M) = max
ω∈Ω

N∏
i=1

p(xi|ω,M) (1.1)

as a criterion for each model M, and a parameter ω∗ ∈ Ω which achieves this optimal value
is known as a maximum likelihood estimate. The idea behind this approach is to find among
all the models a distribution that is mostly likely to produce the given data.

Techniques for attacking such optimization problems are studied intensively in statistics.
A common numerical technique used, especially for graphical models (see Section 1.4.4), is
the Expectation-Maximization (EM) algorithm [14,56]. In recent years, algebraic techniques
for solving this problem are also being explored in the fast-growing field of algebraic statistics.
For example, Gröbner bases methods are being used to solve the Lagrange equations for the
maximum likelihood estimates [16, 30,41].

1.1.2 Marginal Likelihood

The Bayesian approach is to pick the model which maximizes the posteriori probability

p(M|x1, . . . , xN) =
p(x1, . . . , xN ,M)

p(x1, . . . , xN)
∝ p(x1, . . . , xN ,M).

In this approach, we often assume that there is prior distribution p(ω|M)dω on Ω, and that
each model M is assigned a prior probability p(M). Then,

p(x1, . . . , xN ,M) = p(M) p(x1, . . . , xN |M)

where p(x1, . . . , xN |M) is the marginal likelihood integral∫
Ω

p(x1, . . . , xN |ω,M) p(ω|M)dω =

∫
Ω

N∏
i=1

p(xi|ω,M) p(ω|M)dω. (1.2)

Here, we integrate with respect to the measure prescribed by the prior p(ω|M)dω. In this
dissertation, dω is often the standard Lebesgue measure on a subset Ω ⊂ Rd. Computa-
tionally, the greatest difficulty lies in evaluating this integral. To approximate this integral
numerically, statisticians often use Markov chain Monte Carlo (MCMC) methods. One ma-
jor goal of this dissertation is to study how algebraic methods can be employed to evaluate
or approximate this integral efficiently. In so doing, we hope to expand the scope of algebraic
statistics from the study of derivatives in the frequentist approach to that of integrals in the
Bayesian approach. Some of these algebraic methods include lattice point enumeration in
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polytopes, resolution of singularities, and toric geometry. We will describe them in detail in
the coming chapters.

There is a strong relationship between the maximum likelihood and the marginal likeli-
hood integral. Fixing the sample size N and data x1, . . . , xN , we define the log likelihood

f(ω) = − 1

N

N∑
i=1

log p(xi|ω,M)

and consider the function

L(n) =

∫
Ω

e−nf(ω) p(ω|M)dω (1.3)

where n is a positive integer. Then, the marginal likelihood integral (1.2) equals L(N). Now,
with some mild assumptions on f , p(ω|M) and Ω, we can show that asymptotically

L(n) ≈ C · (e−f0)n · n−λ(log n)θ−1

as n→∞ (see Chapter 3). Here, C ∈ R, λ ∈ Q, θ ∈ Z are positive constants, and

f0 = min
ω∈Ω

f(ω).

Thus, (e−f0)N is the maximum likelihood (1.1) from the frequentist approach, so this number
is a good first approximation of the marginal likelihood integral from the Bayesian approach.
We discuss how this approximation can be improved in Section 1.3.

Generally, computing the maximum likelihood involves understanding the zero set

{ω ∈ Ω :
df

dω
(ω) = 0}

while computing the marginal likelihood integral involves understanding the behavior of the
function f in a sufficiently small neighborhood of this zero set via resolution of singularities.
As a result, the algebraic methods for studying this neighborhood is fundamentally different
from that of earlier investigations in algebraic statistics [16,30,41].

1.1.3 Cross Validation

A Bayesian technique for estimating the distribution of X uses the predictive distribution

p(x|x1, . . . , xN ,M) =

∫
Ω

p(x|ω,M)
N∏

i=1

p(xi|ω,M) p(ω|M)dω

∫
Ω

N∏
i=1

p(xi|ω,M) p(ω|M)dω

.
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Assuming that we have new data xN+1, . . . , xN+M , we can then test our predictive distribu-
tion against this data by computing the likelihood

p(xN+1, . . . , xN+M |x1, . . . , xN ,M) =
M∏
i=1

p(xi+N |x1, . . . , xN ,M) (1.4)

and picking the model that minimizes this likelihood.
Cross validation is a model selection method that capitalizes on this principle. The given

data is randomly partitioned into two sets. The first set, called the training set, allows us to
produce a predictive distribution for each model M. Meanwhile, the second set, called the
validation set, is used for computing the likelihood (1.4) as a selection criterion.

Given two models M1 and M2 such that M1 is a subset of M2, the maximum likelihood
criterion always selects the more complex model M2. This is a problem known as overfitting,
because ideally, we want the simplest model that describes the data well. Cross validation
overcomes this problem, penalizing overfitted models by requiring a good fit with the val-
idation set. The marginal likelihood approach also overcomes this problem, since integrals
over higher dimensional parameter spaces suffer larger penalties (see Section 1.3).

1.2 Regular and Singular Models

In statistical learning theory, it is important to have a measure of how far apart two proba-
bility distributions are. Given two distributions q(x)dx and p(x)dx on a space X , we define
the Kullback-Leibler divergence K(q‖p) from q to p to be the integral

K(q‖p) =

∫
X
q(x) log

q(x)

p(x)
dx.

When X is a finite discrete space, the distributions q(x)dx and p(x)dx are discrete measures
and this integral becomes the finite sum

K(q‖p) =
∑
x∈X

q(x) log
q(x)

p(x)
.

This function plays an important role in many applications, as we shall see in this chapter.
As p varies over all distributions on X , the function K(q‖p) is minimized when p = q, so

K(q‖p) ≥ 0 and K(q‖p) = 0 ⇔ q = p

for all distributions q and p. Because the formula for K is not symmetric in q and p,

K(q‖p) 6= K(p‖q)
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in general. Nonetheless, K(q‖p) is sometimes referred to the Kullback-Leibler distance.
We now define what it means for a model to be regular. Let M be a statistical model on

X with parameter space Ω ⊂ Rd. We say that M is identifiable if

p(x|ω1,M) = p(x|ω2,M) ∀x ⇒ ω1 = ω2.

Given ω̃ ∈ Ω, consider the function Kω̃ : Ω → R,

Kω̃(ω) =

∫
X
p(x|ω̃,M) log

p(x|ω̃,M)

p(x|ω,M)
dx.

This integral is the Kullback-Leibler divergence from p(x|ω̃,M)dx to p(x|ω,M)dx. Define
the Fisher information matrix I(ω̃) to be the d×d Hessian matrix of Kω̃(ω) at ω = ω̃, i.e.

Ijk(ω̃) =
∂2Kω̃

∂ωj∂ωk

(ω̃), 1 ≤ j, k ≤ d.

Because Kω̃(ω) attains its minimum at ω = ω̃, the symmetric matrix I(ω̃) is positive semidef-
inite. The model M is regular if M is identifiable and its Fisher information matrix I(ω) is
positive definite for all ω ∈ Ω. Otherwise, we say that M is singular.

Regular models have many desirable properties. For instance, if the data is drawn from
a fixed distribution in the model, then the distribution of the maximum likelihood estimator
approaches a Gaussian distribution as the sample size grows large [58, §1.2.1]. The marginal
likelihood integral also behaves well asymptotically, as we shall see in Section 1.3. Unfortu-
nately, many models studied in statistical learning theory are singular, often because of the
existence of hidden variables. Some such examples will be described in Section 1.4. Recently,
using advanced techniques from algebraic geometry, Watanabe made significant progress in
understanding the asymptotic behavior of singular models [58]. His singular learning theory
will form the foundation of this chapter as we study fiber ideals of statistical models.

Example 1.1 (Coin Toss). Let us illustrate the above concepts with a simple example. Sup-
pose we have a random variable X with state space X := {H,T} representing the outcomes
of a coin toss. Let the data x1, . . . , x100 be a sequence of 100 independent observations of X
with 53 heads and 47 tails in summary. We propose three models to explain this data.

The first model M1 assumes that the data comes from tossing a fair coin, i.e.

p(H|M1) = p(T |M1) =
1

2
.

Here, the maximum likelihood and marginal likelihood are both trivially equal to(
1

2

)100

≈ 7.88860905× 10−31.
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The second model M2 assumes that the coin is biased with heads occurring with probability
ω ∈ Ω := [0, 1]. This model is then parametrized by

p(H|ω,M2) = ω, p(T |ω,M2) = 1− ω.

The maximum likelihood estimate will then be the relative frequency ω∗ = 53/100 of heads
in the data, and the maximum likelihood is(

53

100

)53(
47

100

)47

≈ 9.44540125× 10−31.

Meanwhile, assuming the uniform prior distribution on the parameter space [0, 1], the mar-
ginal likelihood is∫ 1

0

ω53(1− ω)47dω =
1

8525762215589467989652301697600

≈ 1.17291566× 10−31.

Thus, using maximum likelihood as a criterion for model selection, we would have chosen the
more complex M2, while comparison of the marginal likelihood integrals would have given
us M1. This demonstrates how the maximum likelihood approach suffers from overfitting.

Now, consider a third model M3 which involves a hidden variable Y . A coin with sides
colored blue and red is first flipped. If the outcome is blue, we then toss a fair coin. If the
outcome is red, we toss a biased coin where heads occur with probability ω ∈ [0, 1]. Suppose
the colored coin comes up blue with probability t ∈ [0, 1]. Then, the model is parametrized
by the polynomials

p(H|t, ω,M3) = t

(
1

2

)
+ (1− t)w

p(T |t, ω,M3) = t

(
1

2

)
+ (1− t)(1− w)

where (t, ω) ∈ [0, 1]2. One can check that the Fisher information matrix for M2 is I(ω) = 1
for all ω ∈ [0, 1], so M2 is regular. Meanwhile, for M3, when ω = 1/2,

I(t,
1

2
) =

(
0 0
0 8(1− t)2

)
for all t ∈ [0, 1]

so M3 is an example of a singular model. Observe that M3 is also not identifiable, because
the parameters ω = 1/2, t ∈ [0, 1] all give the same distribution p(H) = p(T ) = 1/2.
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1.3 Model Asymptotics

In Section 1.1.2, we observed that the maximum likelihood is a good first approximation of
the marginal likelihood integral. We now study how this approximation can be improved.
Under certain regularity conditions, we may apply a Laplace asymptotic approximation to
the integral L(n) in equation (1.3). This gives us the Bayesian Information Criterion (BIC)
proposed by Schwarz [48]. Not much was known about extending the BIC to singular models,
until the recent work of Watanabe [58]. We discuss his results in this section.

1.3.1 Bayesian Information Criterion

Let Ω be a compact subset of Rd. Let f : Ω → R and ϕ : Ω → R be functions which are real
analytic over Ω. We will consider Laplace integrals of the form

L(n) =

∫
Ω

e−nf(ω) ϕ(ω)dω

where we will be interested in the asymptotics of L(n) as n tends to ∞. Here, the functions
f and ϕ are known as the phase and amplitude functions respectively. An example of such
an integral is the marginal likelihood (1.3).

f(x,y)=exp(-(x2+y2)) f(x,y)=exp(-10(x2+y2))

Figure 1.1: Integral asymptotics depends on maximum of integrand.

Now, as n grows large, the value of L(n) becomes increasingly dominated by the behavior
of the integrand near its maximum points, which correspond to minimum points of the phase
function f(ω). If f(ω) has a unique minimum point and satisfies some regularity condition
near this point, then the asymptotics can be given explicitly.

Proposition 1.2 (Laplace approximation). Let Ω be a compact subset of Rd and f, ϕ be
functions Ω → R which are real analytic over Ω. Suppose f attains its minimum uniquely
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at ω∗ ∈ Ω and is defined in a small Rd-neighborhood of ω∗. If the Hessian H(ω∗) of f at ω∗

is positive definite and ϕ(ω∗) is positive, then as n→∞,

L(n) =

∫
Ω

e−nf(ω) ϕ(ω)dω → (e−f(ω∗))n

√
(2π)d

detH(ω∗)
ϕ(ω∗)n−d/2.

Proof. Consider the Taylor expansion of f around ω∗, and apply the formula∫
Rd

e−
1
2
ωTHωdω =

√
(2π)d

detH

for a Gaussian integral with positive definite matrix H.

If the above regularity conditions hold for the marginal likelihood integral of a statistical
model, then by taking logarithms we get the Bayesian information criterion

logL(n) = −nf(ω∗)− d

2
log n+O(1)

where −nf(ω∗) is the log maximum likelihood. Applying this approximation to linear expo-
nential models [48], Schwarz showed that the BIC selects the correct model with probability
1 as the sample size n→∞. Since then, this model selection criterion has also been applied
to other regular models [27,35,45], such as curved exponential models and graphical models
without hidden variables. In the next section, we study how this analysis could be extended
to singular models, such as those with hidden variables.

1.3.2 Singular Learning Theory

Let X be a random variable with state space X subject to a true distribution q(x)dx, and
let x1, . . . , xN be N independent samples of X. In statistical learning, one may think of q(x)
as the probability density with which a teacher machine is generating data xi. The goal of
the student machine is to estimate this density from the xi, via some learning algorithm. In
this section, we summarize the basics of Watanabe’s singular learning theory [58, §1.4]. For
convenience, given a model M and a true distribution q(x)dx which lies in M, we consider
q(x)dx as part of the information defining M.

Up to this point in the chapter, we have been looking at marginal likelihood integrals
corresponding to some given data. For singular learning theory, we shift gears and assume
that the data is subject to some true distribution, and we will be interested in the expected
behavior of the marginal likelihood integral. It is important to understand this statistical
distinction before we continue. We discuss this distinction in greater detail in Remark 1.4.
We return to marginal likelihood integrals of large-sample data without assuming knowledge
of the true distribution in Section 1.6.
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A critical step in analyzing the asymptotic behavior of a singular model M is under-
standing the log likelihood ratio

KN(ω) =
1

N
log

∏N
i=1 q(xi)∏N

i=1 p(xi|ω,M)
=

1

N

N∑
i=1

log
q(xi)

p(xi|ω,M)
.

The expected value of KN(ω) over all data is the Kullback-Leibler divergence

K(ω) =

∫
X
q(x) log

q(x)

p(x|ω,M)
dx.

For ω ∈ Ω such that K(ω) 6= 0, let us define a random process

ψN(ω) =
NKN(ω)−NK(ω)√

NK(ω)

so that we have the relation

KN(ω) = K(ω) +

√
K(ω)

N
ψN(ω).

One can show that under some mild assumptions, this process converges in law to a Gaussian
process as N →∞. Unfortunately, this process is not defined for points where K(ω) = 0.

Watanabe’s insight was to use a technique in algebraic geometry known as resolution of
singularities (see Section 3.1) to analyze the log likelihood ratio KN(ω). In particular, the
theory says that if K(ω) is real analytic over Ω, there exists a real d-dimensional manifold
M and a real analytic map ρ : M → Ω with the following property: for each y ∈ M , there
exist local coordinates µ = (µ1, . . . , µd) such that y is the origin and

K(ρ(µ)) = µ2κ1
1 · · ·µ2κd

d = µ2κ (1.5)

det ρ′(µ) = h(µ)µτ1
1 · · ·µ

τd
d = h(µ)µτ

for some non-negative integers κ1, . . . , κd, τ1, . . . , τd and non-vanishing real analytic function
h(µ). Using the desingularization map ρ, one can show that

log
q(x)

p(x|g(µ),M)
= a(x, µ)µκ

for some real analytic function a(x, µ). We may now use a(x, u) to define a random process

ξN(µ) =
1√
N

N∑
i=1

(µκ − a(xi, µ))
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which is related to the log likelihood ratio KN(g(µ)) via the relation

KN(g(µ)) = K(g(µ)) +

√
K(g(µ))

N
ξN(µ)

= µ2κ +
1√
N
µκξN(µ). (1.6)

Watanabe showed that as N →∞, ξN(µ) tends to a Gaussian process over the manifold M .
He termed the formula (1.6) as the standard form of the log likelihood ratio.

Desingularizing the Kullback-Leibler divergence K(ω) is crucial for putting the log likeli-
hood ratio in standard form. Watanabe discovered that this desingularization is also critical
in the asymptotic expansion of the log marginal likelihood integral. Recall that given samples
x1, . . . , xN , the marginal likelihood integral for our model M is

L(N) =

∫
Ω

N∏
i=1

p(xi|ω,M) p(ω|M)dω.

Because the xi are random variables subject to a true distribution q(x)dx, the integral L(N)
is also a random variable. To analyze the asymptotic behavior of L(N) as the sample size
N grows large, our first step is to define the zeta function

ζ(z) =

∫
Ω

K(ω)−zϕ(ω)dω, z ∈ C

where ϕ(ω) is the prior p(ω|M) on the parameter space Ω. Standard asymptotic theory (see
Chapter 3) tells us that the full Laurent expansion of this meromorphic function gives the
full asymptotic expansion of the Laplace integral

Z(n) =

∫
Ω

e−nK(ω)ϕ(ω)dω, n ∈ Z+.

In fact, if (λ, θ) is the smallest pole and its multiplicity of the zeta function ζ(z), then

Z(n) ≈ Cn−λ(log n)θ−1

asymptotically. In algebraic geometry, when ϕ(ω) is a positive constant function, the smallest
pole λ is known as the real log canonical threshold of K(ω).

Unlike the random variable L(N), the integral Z(n) is deterministic. Nonetheless, Watan-
abe discovered a close connection between their asymptotics. Using some technical stochastic
arguments, he generalizes the Bayesian information criterion [58, §6.2].

Theorem 1.3 (Watanabe). Suppose q(x), ϕ(ω), p(x|ω,M) and Ω satisfy some mild analy-
ticity and integrality conditions (see [58, §6] for more details).
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Let (λ, θ) be coefficients appearing in the asymptotic expansion

logZ(n) = −λ log n+ (θ − 1) log log n+O(1).

Then as N →∞, the log marginal likelihood integral has the asymptotic expansion

logL(N) =
N∑

i=1

log q(xi)− λ logN + (θ − 1) log logN + F (ξN)

where the random variable F (ξN) is a function of ξN . Consequently, after taking expectations,

E[logL(N)] = N

∫
X
q(x) log q(x)dx− λ logN + (θ − 1) log logN + E[F (ξN)]

where E[F (ξN)] converges to a constant.

The constant λ appearing in the asymptotics of logL(N) is called the learning coefficient
of the model M subject to the true distribution q(x)dx. Surprisingly, to prove Watanabe’s
theorem, resolution of singularities is not necessary [58, §4.5]. The desingularization map ρ
comes in only when we want to compute the pair (λ, θ). Indeed, by applying ρ as a change
of variables to the zeta function, we can show that

(λ, θ) = min
y∈M

(λy, θy)

where we define using the integers κi, τj described in (1.5) for each y ∈ M ,

λy = min
1≤i≤d

τi + 1

2κi

, θy = # min
1≤i≤d

τi + 1

2κi

.

Here, #min denotes the number of times the minimum is attained, and the pairs (λy, θy) are
ordered such that (λ1, θ1) < (λ2, θ2) if for sufficiently large N ,

λ1 logN − θ1 log logN < λ2 logN − θ2 log logN.

This proves a deep result that the learning coefficient is a positive rational number.
In summary, many practical applications of statistical learning theory depend on resolving

the singularities of the Kullback-Leibler divergence K(ω) of a statistical model M and a true
distribution q(x). A major goal of this dissertation is to make this computation feasible for
a large class of models, in particular regularly parametrized models (see Section 1.5). In
physics and information theory, the Kullback-Leibler divergence is also known as relative
entropy, so the results of this dissertation may be applied to problems in these fields as well.
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Remark 1.4. In this section, we considered the asymptotics of many kinds of integrals from
Bayesian statistics. The difference between these integrals may be confusing for the reader,
so we list them side by side below and explain how they differ.

For this discussion, let us fix the sample size N . The integral that we are most interested
in is the marginal likelihood integral L(N) which we rewrite as

L(N) =
N∏

i=1

q(xi) ·
∫

Ω

e−NKN (ω)ϕ(ω)dω =
N∏

i=1

q(xi) ·L (KN)

where KN(ω) is the log likelihood ratio and

L (f) =

∫
Ω

e−Nf(ω)ϕ(ω)dω

for any function f : Ω → R. On the other hand, the Laplace integral

Z(n) = L (K) = L (E(KN))

comes from replacing the log likelihood ratio KN(ω) with its expectation K(ω), the Kullback-
Leibler function. Thus, we have three expressions of interest:

E [log L (KN)] , log E [L (KN)] , log L (E [KN ]).

Their numerical values are not necessarily equal to one another. In Theorem 1.3, Watanabe
relates the asymptotics of the first expression to that of the third expression.

Watanabe’s analysis assumes knowledge of the true distribution. In many practical situa-
tions, we do not have knowledge of the true distribution, but we are given large-sample data.
We want to estimate the marginal likelihood integral for this data using some asymptotic
methods. This question will be discussed for exponential families in Section 1.6.

1.4 Important Classes of Models

In this section, we define and discuss several classes of statistical models which will be used
throughout this dissertation.

1.4.1 Discrete Models

A discrete model is a statistical model whose state space X is a finite set. Writing X = [k] :=
{1, 2, . . . , k}, we define pi to be the probability of the i-th outcome. The set of probability
distributions on [k] is the (k − 1)-dimensional simplex

∆k−1 := {p ∈ Rk : pi ≥ 0 ∀i,
k∑

i=1

pi = 1}.
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Thus, we may represent a discrete model with parameter space Ω by a map p : Ω → ∆k−1.
For instance, the model M3 in Example 1.1 is parametrized over Ω = [0, 1]2 by polynomials

p1(t, ω) = t/2 + ω − tω,

p2(t, ω) = 1− t/2− ω + tω.

Note that p1(t, ω) + p2(t, ω) = 1 and p1, p2 ≥ 0 for all (t, ω) ∈ [0, 1]2.
We say that a discrete model is free if p is the identity map ∆k−1 → ∆k−1. It is easy to

see that free discrete models are regular.

1.4.2 Multivariate Gaussian Models

A multivariate Gaussian model N (µ,Σ) with mean µ ∈ Rk and covariance matrix Σ ∈ Rk×k
�0

is a statistical model with state space X = Rk and probability density function given by

p(x) =
1√

(2π)k det Σ
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
.

Here, Rk×k
�0 is the cone of all k×k positive definite real matrices. It is also possible to define

multivariate Gaussian models for positive semidefinite matrices Σ with zero determinant, but
we will not study them in this chapter. In Sections 1.4.4 and 1.5, we will look at examples of
multivariate Gaussian models where the mean and covariance matrix are parametrized over
some space Ω by a polynomial map (µ,Σ) : Ω → Rk × Rk×k

�0 .
If (µ,Σ) is the identity map Rk × Rk×k

�0 → Rk × Rk×k
�0 , we say that the associated multi-

variate Gaussian model is free. Such models are regular. Indeed, it is not hard to see that
the model is identifiable, and a little bit of work shows that the Fisher information matrix
is Σ−1 which is positive definite if Σ ∈ Rk×k

�0 .

1.4.3 Exponential Families

An exponential family is a statistical model whose probability density function corresponding
to a parameter ω ∈ Ω can be written in the form

p(x|ω) = h(x) exp
(
η(ω)TT (x)− A(ω)

)
for some functions h : X → R, T : X → Rk, A : Ω → R and η : Ω → Rk, and where

η(ω)TT (x) :=
k∑

i=1

ηi(ω)Ti(x)

is the dot product. Now, because
∫
X p(x|ω)dx = 1, it follows that

A(ω) = log

∫
X
h(x) exp

(
η(ω)TT (x)

)
dx (1.7)
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so A(ω) acts as a normalization factor and is called the log-partition function. Observe that
the value of A(ω) only depends on that of η(ω), so we will sometimes write A(η) to emphasize
this dependence. In fact, the density p(x|ω) also only depends on the value of η(ω). For this
reason, η is called the natural parameter.

The log-partition function plays an important role in maximum likelihood estimation.
Let X be a random variable with true distribution p(x|ω)dx for some unknown ω ∈ Ω, and
suppose x1, x2, . . . , xN are N independent samples of X. Then, the likelihood of the data is

N∏
i=1

p(xi|ω) =
N∏

i=1

h(xi) · exp

(
η(ω)T

N∑
i=1

T (xi)−NA(ω)

)
. (1.8)

Maximizing this likelihood is equivalent to maximizing

A(ω)− η(ω)Tµ̂

where µ̂ is the sample mean

µ̂ =
1

N

N∑
i=1

T (xi).

Because the sample mean depends only on the T (xi), we call T (x) the sufficient statistic. A
maximum likelihood estimate η̂ for the natural parameter η is then a solution to

∇A(η) = µ̂. (1.9)

Consequently, if η̂ is in the image of the map η : Ω → Rk, the maximum likelihood estimates
for the parameter ω will be the set

η−1(η̂) = {ω ∈ Ω : η(ω) = η̂}.
The log-partition function also has an interesting connection with the marginal likelihood
integral, via the Kullback-Leibler divergence. We study this connection in Section 1.6.

Discrete models and multivariate Gaussian models are examples of exponential families.
For discrete models with state probabilities pi(ω) for i = 1, . . . , k, we may write

p(i|ω) = exp(η(ω)TT (i)), i ∈ {1, . . . , k}
where η(ω) ∈ Rk with ηi(ω) = log pi(ω), and T (i) ∈ Rk is the i-th standard basis vector. For
multivariate Gaussian models N (µ,Σ), where µ and Σ are functions of ω ∈ Ω, we set

h(x) =
1

(2π)k/2

η(Σ, µ) = (Σ−1,Σ−1µ)

T (x) = (−1

2
xxT , x)

A(Σ, µ) =
1

2

(
log |Σ|+ 〈µµT ,Σ−1〉

)
.

Here, 〈A,B〉 is the matrix inner product, i.e. the trace of the matrix product AB.
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1.4.4 Graphical Models

A graphical model is a statistical model that describes the conditional independence rela-
tionships between some random variables X1, X2, . . . , Xs by means of a graph G = (V,E).
Here, V = {1, 2, . . . , s} is the set of vertices which are in one-to-one correspondence with the
random variables, and E is the set of edges which can be directed or undirected. In practice,
the random variables Xi are usually discrete variables or Gaussian variables.

In this section, we will not go into the various ways conditional independence relationships
are represented by the edges of the graph, but we refer the reader to books [16,32,35] which
offer good introductions to the rich theory of graphical models. Because we are interested in
Bayesian integrals which arise from parametrized models, we will describe parametrizations
of three classes of graphical models, namely:

• Discrete models

- Directed graphical models

- Undirected graphical models

• Gaussian models

- Mixed graph models

Now, let X be the collection (X1, . . . , Xs) of random variables where each Xi is a discrete
variable with ki states. The state space of X is then the cartesian product

∏s
i=1{1, . . . , ki}.

Observations of X will be denoted by the lower case x. Given a subset S ⊂ {1, . . . , s}, let
XS denote the random variable (Xi)i∈S. Let G = (V,E) be a directed acyclic graph, that is,
a directed graph with no directed cycles. For each i ∈ V = {1, . . . , s}, we define the parents
pa(i) of i to be the set of all vertices j such that the directed edge j → i is in E. We say
that a probability distribution on X factors according to G if

p(X = x) =
s∏

i=1

p(Xi = xi|Xpa(i) = xpa(i)). (1.10)

A discrete directed graphical model is the statistical model M of all probability distributions
on X which factor according to G. The model parameters are the conditional probabilities
p(Xi = xi|Xpa(i) = xpa(i)) and the root probabilities p(Xi = xi) where pa(i) = ∅. Therefore,
in this model, a directed edge between two vertices indicates a direct causal relationship
between the associated random variables.

We can also define discrete graphical models for undirected graphs. Suppose G = (V,E)
is an undirected simple graph, that is, a graph without self-loops or multiple edges between
two vertices. A subset of the vertices is called a clique if every two vertices are connected by
an edge. Let C be the set of maximal cliques in G. A discrete undirected graphical model is
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a statistical model on X parametrized by

p(X = x) =
1

Z(ω)

∏
C∈C

ω(C)
xC

(1.11)

where the ω
(C)
xC ∈ R≥0 are model parameters and Z(ω) is the required normalization factor

so that all the probabilities sum to one. In the model, the cliques indicate subsets of random
variables which are correlated with one another.

Finally, we describe Gaussian models for mixed graphs [51]. A mixed graph G = (V,E) is
a graph with three types of edges: undirected edges i−j, directed edges i→ j and bidirected
edges i↔ j. We will assume that we have a partition U ∪B of the vertices V such that all
undirected edges have their vertices in U and all bidirected edges have their vertices in B.
As for the directed edges, they are allowed to point U → U , B → B or U → B, but not
B → U , and we assume that the subgraph formed by the directed edges is acyclic. Between
two vertices, we allow multiple edges of different types, but not more than one of each type.
A Gaussian mixed graph model on G is a multivariate Gaussian model N (0,Σ) with zero
mean and covariance matrix Σ ∈ Rk×k, k = |V |, parametrized as follows. First, we assume
that the vertices of G are labeled 1, . . . , k such that u < b for all u ∈ U and b ∈ B, and
that i < j for all directed edges i → j. Let Λ be a k×k matrix with Λij = 0 if i → j /∈ E
and Λii = 0 for all i. Let K and Φ be symmetric positive definite matrices, with rows and
columns indexed by U and by B respectively, such that Kij = 0 if i − j /∈ E, Φij = 0 if
i↔ j /∈ E and Kii,Φii > 0 for all i. Now, we parametrize Σ using

Σ = (I − Λ)−T

(
K−1 0

0 Φ

)
(I − Λ)−1. (1.12)

Hence, the model is parametrized by the Λij, Kij,Φij corresponding to directed, undirected
and bidirected edges of G, as well as the Kii,Φii corresponding to vertices in U and B. These
parameters are subject to the positive definite conditions on K and Φ. Ancestral graphs [44]
and chain graphs [1] are special cases of mixed graphs, and mixed graph models are used
frequently in structural equation modeling [23].

1.4.5 Mixtures of Independence Models

We consider a collection of discrete random variables

X
(1)
1 , X

(1)
2 , . . . , X

(1)
s1 ,

X
(2)
1 , X

(2)
2 , . . . , X

(2)
s2 ,

...
...

. . .
...

X
(k)
1 , X

(k)
2 , . . . , X

(k)
sk ,
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where X
(i)
1 , . . . , X

(i)
si are identically distributed with state space {0, 1, . . . , ti}. Note that here

the integer 0 is included in the state spaces, for notational reasons.
The independence model M for these variables is a toric model [41, §1.2] represented by

an integer d× n-matrix A with

d = t1 + t2 + · · ·+ tk + k and n =
k∏

i=1

(ti + 1)si . (1.13)

The columns of the matrix A are indexed by elements v of the state space

{0, 1, . . . , t1}s1 × {0, 1, . . . , t2}s2 × · · · × {0, 1, . . . , tk}sk . (1.14)

The rows of the matrix A are indexed by the model parameters, which are the d coordinates
of the points θ = (θ(1), θ(2), . . . , θ(k)) in the polytope

P = ∆t1 ×∆t2 × · · · ×∆tk , (1.15)

and the model M is the subset of the simplex ∆n−1 given parametrically by

pv = Prob
(
X

(i)
j = v

(i)
j for all i, j

)
=

k∏
i=1

si∏
j=1

θ
(i)

v
(i)
j

. (1.16)

This is a monomial in d unknowns. The matrix A is defined by taking its column av to be
the exponent vector of this monomial.

The independence model may also be thought of as a discrete graphical model represented
by Figure 1.2. In this diagram, the boxes around the random variables are called plates. Each
plate indicates that we have several independent and identically distributed variables, while
the number of copies is shown in its corner.

Xi(1)

s1

Xi(2)

s2

Xi(k)

sk

...

Figure 1.2: Graphical model representation of the independence model.

In algebraic geometry, the model M is known as Segre-Veronese variety

Pt1 × Pt2 × · · · × Ptk ↪→ Pn−1, (1.17)
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where the embedding is given by the line bundle O(s1, s2, . . . , sk). The manifold M is the
toric variety of the polytope P . Both objects have dimension d− k, and they are identified
with each other via the moment map [21, §4].

Example 1.5. Consider three binary random variables where the last two random variables
are identically distributed. In our notation, this corresponds to k = 2, s1 = 1, s2 = 2 and
t1 = t2 = 1. We find that d = 4, n = 8, and

A =



p000 p001 p010 p011 p100 p101 p110 p111

θ
(1)
0 1 1 1 1 0 0 0 0

θ
(1)
1 0 0 0 0 1 1 1 1

θ
(2)
0 2 1 1 0 2 1 1 0

θ
(2)
1 0 1 1 2 0 1 1 2

.
The columns of this matrix represent the monomials in the parametrization (1.16). The
model M lies in the 5-dimensional subsimplex of ∆7 given by p001 = p010 and p101 = p110,
and it consists of all rank one matrices(

p000 p001 p100 p101

p010 p011 p110 p111

)
.

In algebraic geometry, the surface M is called a rational normal scroll.

The matrix A has repeated columns whenever si ≥ 2 for some i. It is sometimes con-
venient to represent the model M by the matrix Ã which is obtained from A by removing
repeated columns. We label the columns of Ã by elements v = (v(1), . . . , v(k)) of (1.14) whose
components v(i) ∈ {0, 1, . . . , ti}si are weakly increasing. Hence Ã is a d× ñ-matrix with

ñ =
k∏

i=1

(
si + ti
si

)
. (1.18)

The model M and its mixtures are subsets of a subsimplex ∆ñ−1 of ∆n−1.
The mixture model M(2) is the set of distributions which are convex combinations of two

distributions in M. The natural parameter space of this model is the polytope

Θ = ∆1 × P × P.

Let av ∈ Nd be the column vector of A indexed by the state v, which is either in (1.14) or in
{1, 2, . . . , n}. The parametrization (1.16) can be written simply as pv = θav . The mixture
model M(2) is defined to be the subset of ∆n−1 with the parametric representation

pv = σ0 · θav + σ1 · ρav for (σ, θ, ρ) ∈ Θ.
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Xi(1)

s1

Xi(2)

s2

Xi(k)

sk

...

...
σ

Figure 1.3: Graphical model representation of the mixture model.

This mixture model can also be represented by a discrete directed graphical model, as shown
in Figure 1.3. In this diagram, the vertex labelled σ corresponds to a binary random variable.
The shaded vertices are observed random variables, while the unshaded vertices are hidden.

In algebraic geometry, the model M(2) is known as the first secant variety of the Segre-
Veronese variety (1.17). We could also consider the higher secant varieties M(l) which corre-
spond to mixtures of l independent distributions, and much of our analysis can be extended
to that case, but for simplicity we restrict ourselves to l = 2. The variety M(2) is embedded
in the projective space Pñ−1 with ñ as in (1.18). Note that ñ can be much smaller than n.
If this is the case, it is convenient to aggregate states whose probabilities are identical and
represent the data by a vector Ũ ∈ Nñ. Here is an example.

Example 1.6. Let k=1, s1=4 and t1=1, so M is the independence model for four identically
distributed binary random variables. Then d = 2 and n = 16. The corresponding integer
matrix and its row and column labels are

A =

( p0000 p0001 p0010 p0100 p1000 p0011 · · · p1110 p1111

θ0 4 3 3 3 3 2 · · · 1 0

θ1 0 1 1 1 1 2 · · · 3 4

)
.

However, this matrix has only ñ = 5 distinct columns, and we instead use

Ã =

( p0 p1 p2 p3 p4

θ0 4 3 2 1 0

θ1 0 1 2 3 4

)
.
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The mixture model M(2) is the subset of ∆4 given by the parametrization

pi =

(
4

i

)
·
(
σ0 · θ4−i

0 · θi
1 + σ1 · ρ4−i

0 · ρi
1

)
for i = 0, 1, 2, 3, 4.

In algebraic geometry, this threefold is the secant variety of the rational normal curve in P4.
This is the cubic hypersurface with the implicit equation

det

12p0 3p1 2p2

3p1 2p2 3p3

2p2 3p3 12p4

 = 0.

In [30, Example 9], the likelihood function (2.4) was studied for the data

Ũ = (Ũ0, Ũ1, Ũ2, Ũ3, Ũ4) = (51, 18, 73, 25, 75).

Using Gröbner bases techniques, we find that it has three local maxima (modulo swapping
θ and ρ) whose coordinates are algebraic numbers of degree 12.

In Chapter 2, we examine marginal likelihood integrals for this class of mixture models for
discrete data. Our study augments developments in the asymptotic theory of these integrals
by providing tools for exact symbolic integration when the sample size is small. These exact
results can then serve as a gold standard against which the accuracy of approximation and
asymptotic methods can be ascertained.

The numerical value of the integral we have in mind is a rational number, and exact eval-
uation means computing that rational number rather than a floating point approximation.
For a first example consider the integral∫

Θ

∏
i,j∈{A,C,G,T}

(
πλ

(1)
i λ

(2)
j + τρ

(1)
i ρ

(2)
j

)Uijdπ dτ dλ dρ, (1.19)

where Θ is the 13-dimensional polytope ∆1×∆3×∆3×∆3×∆3. The factors in this product
are the probability simplices

∆1 = {(π, τ) ∈ R2
≥0 : π + τ = 1},

∆3 = {(λ(k)
A , λ

(k)
C , λ

(k)
G , λ

(k)
T ) ∈ R4

≥0 :
∑

i λ
(k)
i = 1}, k = 1, 2,

∆3 = {(ρ(k)
A , ρ

(k)
C , ρ

(k)
G , ρ

(k)
T ) ∈ R4

≥0 :
∑

i ρ
(k)
i = 1}, k = 1, 2.

and we integrate with respect to Lebesgue probability measure on Θ. If we take the exponents
Uij to be the entries of the particular contingency table

U =


4 2 2 2
2 4 2 2
2 2 4 2
2 2 2 4

 , (1.20)
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then the exact value of the integral (1.19) is the rational number

571 · 773426813 · 17682039596993 · 625015426432626533

231 · 320 · 512 · 711 · 118 · 137 · 175 · 195 · 235 · 293 · 313 · 373 · 413 · 432
. (1.21)

The table (1.20) is taken from Example 1.3 of [41], where the integrand∏
i,j∈{A,C,G,T}

(
πλ

(1)
i λ

(2)
j + τρ

(1)
i ρ

(2)
j

)Uij (1.22)

was studied using the EM algorithm, and the problem of validating its global maximum over
Θ was raised. See [19, §4.2] and [50, §3] for further discussions. That optimization problem,
which was widely known as the 100 Swiss Francs problem, has since been solved [22].

The main difficulty in performing computations such as (1.19) = (1.21) lies in the fact
that the expansion of the integrand has many terms. A first naive upper bound on the
number of monomials in the expansion of (1.22) would be∏

i,j∈{A,C,G,T}

(Uij + 1) = 312 · 54 = 332, 150, 625.

However, the true number of monomials is only 3, 892, 097, and we obtain the rational number
(1.21) by summing the values of the corresponding integrals∫

Θ

πa1τa2(λ(1))u(λ(2))v(ρ(1))w(ρ(2))xdπ dτ dλ dρ =

a1! a2!

(a1+a2+1)!
· 3!

∏
i ui!

(
∑

i ui + 3)!
· 3!

∏
i vi!

(
∑

i vi + 3)!
· 3!

∏
iwi!

(
∑

iwi + 3)!
· 3!

∏
i xi!

(
∑

i xi + 3)!
.

The geometric idea behind our approach is that the Newton polytope of (1.22) is a zonotope
and we are summing over its lattice points. Definitions for these geometric objects are given
in Section 2.2, and algorithms implementing these ideas are described in Section 2.3. The
Maple library for our algorithms is made available at

http://math.berkeley.edu/∼shaowei/integrals.html.

1.5 Regularly Parametrized Models

Previously, we saw in Section 1.3.2 that the crux to understanding a singular model lies in
desingularizing its Kullback-Leibler distance, which is an integral or sum of log functions.
While general algorithms for desingularizing any analytic function exist [6,25], applying them
to non-polynomial functions such as the Kullback-Leibler distance can be computationally
prohibitive. Many singular models are however defined by polynomial maps. Our goal is to
exploit this polynomiality in understanding such singular models.
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In this section, we accomplish our goal by introducing fiber ideals for a general class of
statistical models known as regularly parametrized models. Parametrized discrete models and
multivariate Gaussian models are all examples of such models. We show that monomializing
the fiber ideal allows us to construct desingularizations of the Kullback-Leibler distance. In
fact, many invariants of statistical models such as the learning coefficient can be computed
directly from fiber ideals. Computationally, monomializing a polynomial ideal is often easier
than monomializing a non-polynomial analytic function. In some cases, this monomialization
can be achieved simply by inspection.

1.5.1 Fiber Ideals

Let us introduce what it means for a model to be regularly parametrized. Informally, we may
think of such models as regular models whose parameters are functions of new parameters.
Consider a regular model Mf on a state space X parametrized by a space U and whose
probability density function at each u ∈ U is fx(u) := p(x|u,Mf ). Suppose Mg is another
model on X parametrized by a space Ω whose probability density function at each ω ∈ Ω is
gx(ω) := p(x|ω,Mg). Let u : Ω → U be a real analytic map.

Definition 1.7. We say that Mg is regularly parametrized via u with base Mf if gx(ω) =
fx(u(ω)) for each ω ∈ Ω.

We represent this relationship by the following commutative diagram, where ∆X denotes
the set of probability distributions on X .

Ω u //

g
��@

@@
@@

@@
@ U

f~~~~
~~

~~
~~

∆X

In other words, g = f ◦ u and the model Mg factors through the regular model Mf . It is
computationally favorable for the map u to be polynomial, but we will not require this here.
Free discrete models and free multivariate Gaussian models are regular, so parametrized
versions of these models are examples of regularly parametrized models.

Now, let û be a point in the parameter space U of the regular base model Mf . Suppose
that U ⊂ Rk so the map u has coordinate functions u1, . . . , uk.

Definition 1.8. The fiber ideal Iû of Mg at û is the ideal

〈u(ω)− û〉 := 〈u1(ω)− û1, . . . , uk(ω)− ûk〉

in the ring AΩ of real-valued analytic functions on Ω. The variety of this ideal is the fiber
{ω ∈ Ω : u(ω) = û} in Ω of the map u over the point û.
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Suppose also that Ω ⊂ Rd, so each point ω has coordinates ω1, . . . , ωd. If the map u is
polynomial in these coordinates, then the polynomial ideal in R[ω1, . . . , ωd] ⊂ AΩ generated
by u1(ω)− û1, . . . , uk(ω)− ûk will be contained as a set in the fiber ideal Iû. The ring AΩ also
has many polynomial functions such as 1 + ω2

1 which are nonzero over Ω and are therefore
units in the ring. Multiplication or division by these units leaves the fiber ideal unchanged.

Example 1.9. Discrete models are regularly parametrized, so we may define fiber ideals at
each point p̂ in the simplex ∆k−1 where k is the number of states. If the discrete model is
described by a map p : Ω → ∆k−1, then the fiber ideal Ip̂ at p̂ ∈ ∆k−1 is

〈p1(ω)− p̂1, . . . , pk(ω)− p̂k〉.

In fact, we may leave out the generator pk(ω)− p̂k because

pk(ω)− p̂k = −
k−1∑
i=1

(
pi(ω)− p̂i

)
.

For discrete directed graphical models, each pi(ω) is a polynomial (1.10) in the conditional
and root probabilities, so the fiber ideal is finitely generated by polynomials. For undirected
graphical models, each pi(ω) is a rational function (1.11) but the normalization factor Z(ω)
is a polynomial which does not vanish over the parameter space Ω. Hence, Z(ω) is a unit in
AΩ and the fiber ideal is once again finitely generated by the polynomials∏

C∈C

ω(C)
xC

− p̂xZ(ω), for x ∈
s∏

i=1

{1, . . . , ki}.

Note that the ambient ring AΩ of this ideal changes with the parameter space Ω.

Example 1.10. Multivariate Gaussian models are regularly parametrized, and the fiber
ideal at a point (µ̂, Σ̂) ∈ R×Rk×k

�0 is generated by

µi(ω)− µ̂i, for 1 ≤ i ≤ k,

Σij(ω)− Σ̂ij, for 1 ≤ i, j ≤ k.

For Gaussian mixed graph models, Σ(ω) is parametrized using a product (1.12) of inverse
matrices, and each entry in an inverse matrix is a cofactor divided by the matrix determinant.
The matrix I − Λ is upper triangular with ones in the diagonal, so its determinant is 1. As
for the matrix K, it is positive definite by definition, so its determinant is nonzero. Thus, the
Σij(ω) are rational functions whose denominator detK does not vanish over the parameter
space Ω. Multiplying by this unit, we see that the fiber ideal is again finitely generated by
the polynomials

Σij(ω)− Σ̂ij detK, for 1 ≤ i, j ≤ k.

Each Σij(ω) can be expressed as a sum of path monomials over all treks between vertices i
and j in the mixed graph [51].
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1.5.2 Real Log Canonical Thresholds

Just as we defined real log canonical thresholds (RLCTs) for functions in Section 1.3.2, we
can also define RLCTs for ideals. In fact, the learning coefficient of a regularly parametrized
model can be computed from the real log canonical threshold of its fiber ideal.

Let Ω ⊂ Rd be a compact semianalytic set where semianalytic means that Ω is defined
by analytic inequalities

Ω = {ω ∈ Rd : g1(ω) ≥ 0, . . . , gl(ω) ≥ 0}.

We also require the interior of Ω to be nonempty; otherwise, integrals over Ω will be iden-
tically zero. Let I = 〈f1, . . . , fr〉 be an ideal in the ring AΩ of real analytic functions over
Ω. Let ϕ : Ω → R be nearly analytic, i.e. ϕ is a product ϕaϕs of functions where ϕa is real
analytic and ϕs is positive and smooth. Define the real log canonical threshold RLCTΩ(I;ϕ)
of I to be the pair (λ, θ) where λ is the smallest pole of the zeta function

ζ(z) =

∫
Ω

(
f1(ω)2 + · · ·+ fr(ω)2

)−z/2 |ϕ(ω)|dω, z ∈ C

and θ its multiplicity. This definition is independent of the choice of generators f1, . . . , fr of
the ideal I. In Chapter 4, we prove fundamental properties of RLCTs of ideals and explore
their relationship to Newton polyhedra in nondegenerate cases. In particular, we show how
to compute the RLCT of a monomial ideal when Ω is a sufficiently small neighborhood of the
origin and ϕ is a monomial function. A Singular library which checks the nondegeneracy
of functions and ideals, and computes the RLCT of monomial ideals, is made available at

http://math.berkeley.edu/∼shaowei/rlct.html.

For regularly parametrized models, we now state the relationship between their learning
coefficients and real log canonical thresholds of their fiber ideals. This theorem is one of the
main contributions of this dissertation.

Theorem 1.11. Let M and MR be models for X with parameter spaces U and Ω respectively
such that M is regularly parametrized with base MR via the map u : Ω → U . Assuming
that the true distribution is q(x)dx = p(x|û,MR)dx for some û ∈ U , let (λ, θ) denote the
learning coefficient of M subject to q(x)dx. Let Iû = 〈u(ω)− û〉 be the fiber ideal of M at û.

If the variety V = {ω ∈ Ω : u(ω) = û} is nonempty, then

(2λ, θ) = min
ω∈V

RLCTΩω(Iû;ϕ)

where each Ωω is a sufficiently small neighborhood of ω in Ω.
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Proof. Let K : U → R be the Kullback-Leibler function

u 7→
∫
X
q(x) log

q(x)

p(x|u,MR)
dx.

Since q(x) = p(x|û,MR), this function achieves its minimum at u = û so K(û) = 0 and
∇K(û) = 0. The identifiability ofMR ensures that this minimum point is unique. According
to Theorem 1.3, the learning coefficient (λ, θ) is given by

(λ, θ) = RLCTΩ(K ◦ u(ω);ϕ).

Note that {ω ∈ Ω : K ◦ u(ω) = 0} = {ω ∈ Ω : u(ω) = û} = V . Using Proposition 4.2,

(λ, θ) = min
ω∈V

RLCTΩω(K ◦ u(ω);ϕ).

Finally, because MR is regular, the Fisher information matrix ∇2K(û) is positive definite
so we apply Proposition 4.4 to get

(2λ, θ) = min
ω∈V

RLCTΩω(〈u(ω)− û〉;ϕ).

Remark 1.12. The inspiration to reduce the Kullback-Leibler function to a sum of squares
of polynomial parametrizing the model came from a discussion with Sumio Watanabe about
learning coefficients of discrete models in September 2008. This eventually led to the idea of
defining fiber ideals and studying their real log canonical thresholds.

During a converseration in October 2010, Mathias Drton asked if fiber ideals can also be
defined for Gaussian models. His question prompted the author to introduce the concept of
regularly parametrized models and to extend fiber ideals to all such models.

1.5.3 Desingularizing the Kullback-Leibler Function

In the previous section, we saw that the learning coefficient can be computed by monomi-
alizing the fiber ideal I of our singular model. This monomialization can be described by a
real analytic manifold M covered by coordinate charts Mi and a proper real analytic map
ρ : M → Ω such that the pullback ideal ρ∗I = {f ◦ ρ ∈ AM : f ∈ I} is monomial in each
chart, where AM represents the ring of real analytic functions on M . Furthermore, we will
also require that the map ρ is an isomorphism between Ω \V(I) and M \V(ρ∗I). Here, V(I)
is the analytic variety {ω ∈ Ω : f(ω) = 0 ∀f ∈ I}, and similarly for V(ρ∗I). If ρ satisfies
this property, we say that it is a change of variable away from V(I). If in each chart with
coordinates x1, . . . , xd, the Jacobian determiant of ρ also equals

|ρ′(x)| = b(x)xt1
1 · · ·x

td
d
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where the t1 are non-negative integers and b(x) does not vanish for all x, we say that ρ is a
monomialization map for I.

In fact, this monomialization step provides much more information than just the learning
coefficient. It is the key to desingularizing the Kullback-Leibler function of the model, thus
allowing us to express the log likelihood ratio in standard form (see Section 1.3.2). The last
ingredient we need for desingularizing the Kullback-Leibler function is principalizing our
monomial fiber ideal. The principalization of ideals is a topic of great interest in algebraic
geometry, see [11,52,59] and [34, §3.3]. We now explain one approach to this process.

Let M be a real analytic manifold, and let I be an ideal in the ring AM of real analytic
functions on M . Suppose we can cover M with coordinate charts Mi so that the ideal I is
monomial in each chart. Then, according to Goward [24], there is a real analytic manifold
M covered by coordinate charts Mi and a proper real analytic map ρG : M → M such
that the pullback ideal ρ∗GI is monomial and principal in each chart. Here, principal means
that the ideal is generated by exactly one function. Furthermore, ρG is the composition of
a sequence of blowups whose centers are the intersection of coordinate hyperplanes in each
chart Mi or charts generated by previous blowups. Goward showed that there is a simple
combinatorial algorithm for calculating this sequence of blowups. We call ρG the Goward
principalization map for the ideal I.

Let us describe briefly what these blowups look like. Suppose we have a chart V ⊂ Rd

with coordinates ω1, . . . , ωd, and we want to blow up this chart with respect to the center
{ω ∈ Rd : ω1 = · · · = ωr = 0}, 2 ≤ r ≤ d. We define the blowup space

Ṽ = {((ω1, . . . , ωd), (ξ1 : . . . : ξr)) ∈ V×Pr−1 : ωiξj = ωjξi, i, j = 1, . . . , r}

where (ξ1 : . . . : ξr) are homogeneous coordinates of the (r− 1)-dimensional projective space
Pr−1. The blowup map π : Ṽ → V is the projection (ω, ξ) 7→ ω. The coordinate charts

Ṽi = {(ω, ξ) ∈ Ṽ : ξi 6= 0}, i = 1, . . . , r.

with natural local coordinates (ω
(i)
1 , . . . , ω

(i)
d ) satisfying

ω
(i)
j =

{
ωj, j = i or j > r,

ξj/ξi, otherwise.

cover the blowup space Ṽ , and the blowup map can be expressed as

ωj =

{
ω

(i)
j , j = i or j > r,

ω
(i)
i ω

(i)
j , otherwise

in terms of the local coordinates of the chart Ṽi.
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If M ⊂ Rd is a subset with coordinates ω1, . . . , ωd and the ideal I is monomial in these
coordinates, then we may also use the Newton polyhedra methods in Section 4.2 to principal-
ize the ideal. More specifically, if F is a smooth refinement of the normal fan of the Newton
polyhedron P(I), then the associated toric blowup ρF : P(F) →M is a principalization map
for I. This technique is commonly used for the resolution of singularities in toric varieties. In
comparison, Goward’s principalization method is more general, because it applies to locally
monomial ideal sheaves over any real analytic manifold.

With these principalization maps in place, we may now desingularize the Kullback-Leibler
function for regularly parametrized models. Our next result may be thought of as an exten-
sion of Proposition 4.4.

Theorem 1.13. Let U ⊂ Rd. Let the maps u : Ω → U and K : U → R be real analytic at
0 ∈ Ω and û = u(0) ∈ U respectively. Suppose that K(û) = 0,∇K(û) = 0 and the Hessian
∇2K(û) is positive definite. Let I ⊂ AΩ be the ideal 〈u(ω)− û〉.

Let ρ : M → Ω be a monomialization map for I, and suppose ρG : M →M is the Goward
principalization map or a toric principalization map for ρ∗I. Then, ρ◦ρG desingularizes K◦u
at the origin.

Proof. By applying a translation to the subset U of Rd, we may assume without loss of
generality that û is the origin 0 ∈ U . Since we are only interested in desingularizing K ◦ u
at the origin 0 ∈ Ω, we may assume that Ω and U are sufficiently small neighborhoods of
their origins such that K(u) = 0 if and only if u = 0.

The proof of Proposition 4.4 tells us that there is a linear change of coordinates T : Rd →
Rd such that the power series expansion of K is v2

1 + · · · + v2
d + O(v3) where (v1, . . . , vd) =

T (u1, . . . , ud). The Morse lemma [40, §2.2] says that in fact

K ◦ T−1(v) = (v1 + g1(v))2 + . . .+ (vd + gd(v))2

for some functions gi(v) = O(v2) which are real analytic at the origin.
Now, if we consider v(ω) = T ◦ u(ω), note that the coordinate functions v1(ω), . . . , vd(ω)

generate the same ideal as u1(ω), . . . , ud(ω). In each chart of M , the functions

u1 ◦ ρ ◦ ρG(µ), . . . , ud ◦ ρ ◦ ρG(µ)

generate a principal monomial ideal 〈µκ1
1 · · ·µκd

d 〉 for some non-negative integers κi. Thus,

vi ◦ ρ ◦ ρG(µ) = µκqi(µ)

for some functions qi(µ) ∈ AM . Because µκ is generated by the vi ◦ ρ ◦ ρG(µ), we have

µκ = (q1(µ)r1(µ) + · · ·+ qd(µ)rd(µ))µκ

for some functions ri(µ) ∈ AM . Since the interior of M is nonempty, the ring AM does not
have any zero divisors, so we get

1 = q1(µ)r1(µ) + · · ·+ qd(µ)rd(µ). (1.23)
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Applying the change of variable ρ ◦ ρG to K ◦ u, we have

K ◦ u ◦ ρ ◦ ρG(µ) = K ◦ T−1(v ◦ ρ ◦ ρG(µ))

= (µκq1 + g1(µ
κq))2 + . . .+ (µκqd + gd(µκq))2

= µκ((q1 + µκh1)
2 + . . .+ (qd + µκhd)2)

for some functions hi(µ). To prove that ρ◦ρG desingularizes K◦u, we claim that the function

a(µ) = (q1 + µκh1)
2 + . . .+ (qd + µκhd)2

does not vanish in (ρ ◦ ρG)−1(Ω). Indeed, if a(µ) = 0, then K(u ◦ ρ ◦ ρG(µ)) = 0. Therefore,
u ◦ ρ ◦ ρG(µ) is the origin, and so is v ◦ ρ ◦ ρG(µ). This implies that µκqi(µ) = 0 for all i. If
µκ 6= 0, then qi(µ) = 0 for all i, which contradicts (1.23). Now, suppose µκ = 0. Because
a(µ) = 0 implies qi + µκhi = 0 for all i, we get as a consequence that qi(µ) = 0 for all i,
which again contradicts (1.23).

To finish up the proof that ρ ◦ ρG is a resolution of singularities for K ◦ u, it remains to
show that in each chart of M , the Jacobian determinant of ρ ◦ ρG equals

|(ρ ◦ ρG)′| = b(µ)µτ1
1 · · ·µ

τd
d

where the τi are non-negative integers and b(µ) does not vanish in (ρ◦ρG)−1(Ω). Indeed, the
Jacobian determinant of ρ already has this form, and the Goward principalization and toric
principalization only makes monomial substitutions and products to this determinant.

Corollary 1.14. LetM andMR be models for X with parameter spaces U and Ω respectively
such that M is regularly parametrized with base MR via the map u : Ω → U . Suppose the
true distribution is q(x)dx = p(x|ω̂,M)dx for some ω̂ ∈ Ω. We translate Ω so that ŵ is the
origin 0 ∈ Ω. Let û = u(0) and Iû = 〈u(ω)− û〉 be the fiber ideal of M at û. Let

K(ω) =

∫
X
q(x) log

q(x)

p(x|ω,M)
dx

be the Kullback-Leibler function for M at the true distribution.
Let ρ : M → Ω be a monomialization map for I, and suppose ρG : M →M is the Goward

principalization map or a toric principalization map for ρ∗I. Then, ρ ◦ ρG desingularizes K
at the origin.

This corollary gives us a new perspective on the difference between regular and singu-
lar models. For regular models, monomializing the fiber ideal is equivalent to finding a
linear change of variables v = T (u) so that the ideal is generated by the coordinate func-
tions v1, . . . , vd. This coordinate change allows us to apply the Laplace approximation, the
Bayesian information criterion and the central limit theorem. For singular models, this
change of variables may no longer be linear. Because monomializing the fiber ideal allows us
to compute learning coefficients and formulate central limit theorems, we may think of this
monomial representation of the fiber ideal as a standard form of the singular model.
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1.6 Marginal Likelihood of Exponential Families

In Section 1.1.2, we suggested a method of estimating the marginal likelihood integral that is
different from Watanabe’s approach in Theorem 1.3 and Remark 1.4. Recall that he assumes
the data come from a true distribution, and he computes the first term asymptotics of the
expected log marginal likelihood. On the other hand, our suggested method does not assume
that the true distribution is known. Instead, we consider the function

L(n) =
( N∏

i=1

p(xi|ω̂,M)1/N
)n

·
∫

Ω

e−nKN (ω)ϕ(ω)dω (1.24)

where ϕ(ω) = p(ω|M) and KN(ω) is the log likelihood ratio

KN(ω) =
1

N

N∑
i=1

log
p(xi|ω̂,M)

p(xi|ω,M)
(1.25)

for some maximum likelihood estimate ω̂. Note that the integer variable n is different from
the sample size N in the formula for L(n), and that L(N) is precisely the marginal likelihood
integral for the given data x1, . . . , xN .

Our goal is to describe the asymptotics of L(n) as n→∞. To do that, we need to find
a resolution of singularities for KN(ω) but this is a difficult problem. We want to find a way
of relating the desingularization of KN(ω) to that of some fiber ideal. This idea works out
well for exponential families. Indeed, if M is an exponential family with probability density
p(x|ω,M) = h(x) exp(η(ω)TT (x)− A(ω)), then

KN(ω) =
(
A(ω)− η(ω)Tµ̂

)
−
(
A(ω̂)− η(ω̂)Tµ̂

)
, µ̂ =

1

N

N∑
i=1

T (xi)

where µ̂ is the mean of the sufficient statistics T (xi). Recall that A(ω) depends only on the
natural parameter η. Thus, we may define another exponential family MN whose probability
density is p(x|η,MN) = h(x) exp(ηTT (x)−A(η)), and so the model M factors through MN .
If η(ω̂) is also a maximum likelihood estimate for MN , we say that the estimate ω̂ is natural.

Remark 1.15. For a discrete model M parametrized by state probabilities p1(ω), . . . , pk(ω),
there exist a natural MLE if and only if the set S = {ω ∈ Ω : p(ω) = q̂} is nonempty where
q̂ = (q̂1, . . . , q̂k) is the vector of relative frequencies coming from the data. We have a similar
statement for a multivariate Gaussian model parametrized by mean µ(ω) and covariance
Σ(ω). If µ̂ and Σ̂ are the sample mean and sample covariance matrix, then the model has a
natural MLE if and only if the set S = {ω ∈ Ω : µ(ω) = µ̂, Σ(ω) = Σ̂} is nonempty. In fact,
for both discrete and Gaussian models, if a natural MLE exists, then all MLEs are natural
and the set of MLEs is precisely the set S.



CHAPTER 1. INTEGRALS IN BAYESIAN STATISTICS 31

Let us study this condition more closely for a Gaussian mixed graph model M. Suppose
d is the number of parameters in the model. The parameter space Ω is an open subset of Rd,
because it is subject to the positive definite conditions on the matrices K and Φ in (1.12).
Thus, the MLE may not exist, because it is possible that the likelihood function attains its
maximum only on the boundary of Ω. Geometrically, to find the set U of all MLEs, we first
consider, in the image Σ(Ω) ⊂ Rk×k, the set T of covariance matrices where the likelihood
function is maximized. Then, U is the preimage Σ−1(T ). Therefore, MLEs exist if and only if
T is nonempty, and natural MLEs exist if and only if T contains only the sample covariance
Σ̂. When the underlying graph is a directed graph, explicit conditions for the existence and
the uniqueness of the MLE are investigated in [13,53].

The next result shows that if natural MLEs exist, then KN(ω) is precisely equal to the
Kullback-Leibler function of M at the maximum likelihood distribution.

Proposition 1.16. Let M and MN be exponential families as described above. Given some
data, suppose ω̂ is a natural maximum likelihood estimate for M. Then, the Kullback-Leibler
divergence K(ω) of M from the maximum likelihood distribution p(x|ω̂)dx to the distribution
p(x|ω)dx, ω ∈ Ω, depends only on η(ω). It equals

K(η) =
(
A(η)− ηTµ̂

)
−
(
A(η̂)− η̂Tµ̂

)
, η̂ = η(ω̂).

Proof. The first statement follows from the fact that the distributions in the exponential
family depend only on the natural parameter η. Now, by definition, K(η) equals∫

X
h(x) eη̂TT (x)−A(η̂)

(
A(η)− ηTT (x)− A(η̂) + η̂TT (x)

)
dx.

The proposition follows if we have

1 =

∫
X
h(x) eη̂TT (x)−A(η̂)dx,

µ̂ =

∫
X
h(x) eη̂TT (x)−A(η̂) T (x)dx.

The first equation comes from
∫
p(x|η̂)dx = 1 while the second is the result of differentiating

(1.7) with respect to the natural parameter η and applying (1.9).

Now, because KN(ω) is equal to the Kullback-Leibler function of the singular model at
some true distribution, we may use the results of Section 1.5 to desingularize KN(ω) and
obtain the full asymptotics of L(n) for regularly parametrized exponential families.

Theorem 1.17. Let M and MR be models for X with parameter spaces U and Ω respectively
such that M is regularly parametrized with base MR via the map u : Ω → U . Let x1, . . . , xN

be independent random samples of X. Suppose that M is an exponential family and that ω̂
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is a natural maximum likelihood estimate for the data. We translate Ω so that ω̂ is the origin
0 ∈ Ω. Let û = u(0) and Iû = 〈u(ω)− û〉 be the fiber ideal of M at û. Let L(n) and KN(ω)
be functions defined by (1.24) and (1.25).

Then, asymptotically as n→∞,

L(n) ≈
( N∏

i=1

p(xi|ω̂,M)1/N
)n

· Cn−λ(log n)θ−1

where C is a positive constant and

(2λ, θ) = min
ω: u(ω)=û

RLCTΩω(Iû;ϕ).

Moreover, if ρ : M → Ω is a monomialization map for Iû, and ρG : M →M is the Goward
principalization map or a toric principalization map for ρ∗I, then ρ◦ρG desingularizes KN(ω)
at the origin.

Proof. Because the maximum likelihood estimate ω̂ is natural, it follows from Proposition
1.16 that KN(ω) equals the Kullback-Leibler function K(ω) of M at the true distribution
p(x|ω̂,M)dx. Therefore, the asymptotics of L(n) is given by the real log canonical threshold
(λ, θ) of K(ω). By Theorem 1.11, this RLCT is given by the formula stated above. Moreover,
Theorem 1.13 tells us how to desingularize K(ω) after monomializing the fiber ideal.

The resolution of singularities ρ ◦ ρG described in the theorem allows us to compute, not
just the first term, but the full asymptotics of L(n). This is accomplished by applying the
desingularization map to the zeta function associated to KN(ω), in order to compute its
poles and Laurent coefficients. We can then employ Theorem 3.16 to compute the desired
asymptotic expansion.

Alternatively, we can also use the methods of Chapter 5, without computing the Goward
principalization map ρG. Indeed, suppose we want to compute the asymptotic expansion up
to O(n−λ0(log n)θ0−1) for some (λ0, θ0). We first find the set S of points µ ∈ M where the
RLCT of the pullback ρ∗Iû is at most (λ0, θ0). We then try to cover S with hypercubic patches
[0, 1]d and apply either Theorem 5.11 or Theorem 5.13 to compute the desired asymptotic
coefficients. These two theorems pertain to nondegenerate functions only, but we are able to
apply them, because the pullback ρ∗Iû is monomial, and so by Proposition 4.22, KN ◦ ρ(µ)
is nondegenerate at every point µ ∈M .

Example 1.18. To demonstrate how fiber ideals can be used to compute asymptotics of
marginal likelihood integrals given large-sample data, we revisit the coin toss model M3 in
Example 1.1. Recall that the model is parametrized by polynomials

p1(ω, t) =
1

2
t+ (1− t)ω

p2(ω, t) =
1

2
t+ (1− t)(1− ω)
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where the parameters (ω, t) lie in [0, 1]2. Suppose we have N independent random samples
with relative frequencies q1 and q2. The marginal likelihood integral of the data is∫

[0,1]2
p1(ω, t)

Nq1p2(ω, t)
Nq2 dωdt = (qq1

1 q
q2

2 )N

∫
[0,1]2

e−NK(ω,t)dωdt

where K(ω, t) is the Kullback-Leibler function

K(ω, t) = q1 log
q1

p1(ω, t)
+ q2 log

q2
p2(ω, t)

.

Fixing q1 and q2 so that the function K(ω, t) is independent of N , we are interested in the
first term asymptotics of the Laplace integral

L(N) =

∫
[0,1]2

e−NK(ω,t)dωdt

as N →∞. For this discrete model, the fiber ideal is

I = 〈p1(ω, t)− q1, p2(ω, t)− q2〉 = 〈p1(ω, t)− q1〉.

Case 1: (q1, q2) 6= (1/2, 1/2).
Without loss of generality, let us assume q1 > 1/2. The variety V of the fiber ideal is

V =

{
(ω, t) ∈ [0, 1]2 : q1 ≤ ω ≤ 1, (ω − 1

2
)(1− t) = q1 −

1

2

}
.

A graph of this variety is shown in Figure 1.4. This variety is nonempty, so by Remark 1.15,
there exist natural maximum likelihood estimates for the model. We may use Theorem 1.17
in deriving the asymptotics of L(N). According to Theorem 3.16, the asymptotics does not
change if we limit the domain of integration to a small neighborhood of the variety V . Let

Ω = {(ω, t) : δ ≤ ω ≤ 1, 0 ≤ t ≤ 1}

be the new domain, where 1/2 < δ < q1. Because our goal is to monomialize the fiber ideal,
let us make the substitution

t =
−s+ (ω − q1)

ω − 1/2

so that the fiber ideal becomes 〈s〉. This substitution is real analytic over our new domain
Ω. If we also substitute ω = q2u+ q1, the domain Ω becomes the triangle

∆ = {(u, s) : −(q1 − 1/2) ≤ s ≤ q2u, −
q1 − δ

q2
≤ u ≤ 1}
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Figure 1.4: The variety of the fiber ideal for q1 = 0.6.

while the variety of the fiber ideal becomes

{(u, s) : 0 ≤ u ≤ 1, s = 0}.

At this point, we could easily compute the learning coefficient (λ, θ) of the model by finding
the RLCT of the fiber ideal. However, because we are ultimately interested in the first term
asymptotics CN−λ(logN)θ−1, we will do a little bit more work so that we can use Theorem
5.11 to compute the constant C. To apply this theorem directly, we would like to integrate
over the rectangular domain

Ξ = {(u, s) : 0 ≤ u ≤ 1, −1 ≤ s ≤ 1}.

instead of over the triangular domain ∆. This is possible if we adjusted for the asymptotics
of the integral over the regions

∆1 = {(u, s) : 0 ≤ q2u ≤ s ≤ ε}
∆2 = {(u, s) : −ε ≤ s ≤ q2u ≤ 0}

for some small ε > 0. We show later that the integrals over these regions do not affect the
first term asymptotics of the integral over Ξ. The Jacobian determinant of our substitutions
is q2/(q2u + q1 − 1/2), while the integrals over the domains {0 ≤ u ≤ 1, −1 ≤ s ≤ 0} and
{0 ≤ u ≤ 1, 0 ≤ s ≤ 1} are equal. Therefore, the integral over Ξ equals

2

∫
[0,1]2

e−NK(u,s) q2
q2u+ q1 − 1/2

duds (1.26)
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where

K(u, s) = q1 log
q1

q1 + s
+ q2 log

q2
q2 − s

.

Now, the fiber ideal 〈s〉 is monomial, so by Proposition 4.22, K(u, s) is nondegenerate. The
Newton polyhedron of K(u, s) is twice that of the fiber ideal. In particular, it is the positive
orthant with the origin translated to the point (0, 2). Therefore, the RLCT of K(u, s) is
(λ, θ) = (1/2, 1). The normal fan F of this polyhedron has only one cone, namely the positive
orthant. Thus, the fan is already smooth. By Theorem 5.11, the leading coefficient C is

Γ(1/2)

∫
[0,1]

g(u, 0)−1/2 q2
q2u+ q1 − 1/2

du

where g(u, s) is the strict transform K(u, s)/s2. A simple calculation shows that

g(u, 0) =
1

2

(
1

q1
+

1

q2

)
=

1

2q1q2
.

Consequently, the first term asymptotics of L(N) is

L(N) ≈
√

2πq1q2 log
1

2q1 − 1
N−1/2. (1.27)

Finally, to prove that the integrals over the regions ∆1 and ∆2 do not affect the first term
asymptotics of L(N), we blow up the origin so that both regions become rectangular. In the
region ∆1, after substituting u = xy and s = y, the integral becomes∫ ε

0

∫ 1/q2

0

e−NK(y) q2y

q2xy + q1 − 1/2
dxdy

where K(y) is K(u, s) with s = y. Now, by Proposition 3.9,

RLCT[0, 1
q2

]×[0,ε]

(
K(y);

q2y

q2xy + q1 − 1/2

)
= RLCT[0, 1

q2
]×[0,ε] (K(y); y)

because q2/(q2xy+q1−1/2) is positive in the above domain. Applying the Newton polyhedra
method to the nondegenerate function K(y), we learn that the latter RLCT equals (1, 1).
Hence, the integral over ∆1 is grows like N−1 asymptotically, and it does not affect the first
term asymptotics of L(N). The same is true for ∆2.

Case 2: (q1, q2) = (1/2, 1/2).
This is the more interesting scenario in our coin toss example because of the singularities

involved. The variety V of the fiber ideal is the union of lines

{ω = 1/2} ∪ {t = 1} ⊂ [0, 1]2.
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After substituting ω = (1 + u)/2 and t = 1− s, the fiber ideal becomes the monomial ideal
〈us〉 while the domain of integration becomes {(u, s) : −1 ≤ u ≤ 1, 0 ≤ s ≤ 1}. Meanwhile,
the Jacobian determinant of the substitutions is 1/2, but the integrals over the domains
{−1 ≤ u ≤ 0, 0 ≤ s ≤ 1} and {0 ≤ u ≤ 1, 0 ≤ s ≤ 1} are equal. Therefore, we can write the
marginal likelihood integral L(N) as∫

[0,1]2
e−NK(u,s)duds (1.28)

where

K(u, s) =
1

2
log

1

1 + us
+

1

2
log

1

1− us
.

By applying Theorems 1.17 and 5.11, we find that the RLCT of K(u, s) is (λ, θ) = (1/2, 2)
and that the first term asymptotics of L(N) is

L(N) ≈
√
π

8
N−1/2 logN.

The computations are not difficult in this case, so we leave them to the reader. In Example
5.15, we derive higher order asymptotics of this integral.

Remark 1.19. For regularly parametrized exponential families, the asymptotics of marginal
likelihood integrals given data depends very much on the sample mean û appearing in Theo-
rem 1.17. One may argue that in practice, the data almost always gives a sample mean û at
which the likelihood integral can be estimated using the BIC or the Laplace approximation.
Consequently, it seems unnecessary to study these integrals at singular points û.

Example 1.18 demonstrates how this argument can be misleading. In this example, the
sample mean û is the vector q = (q1, q2) of relative frequencies of the data. Firstly, for all
values of q, the variety of the fiber ideal is not a collection of isolated points, so the Laplace
approximation cannot be applied directly. Secondly, the BIC only gives the exponents (λ, θ)
of the first term asymptotics CN−λ(logN)θ−1 but not the leading coefficient C. It is in this
constant C that a lot of interesting asymptotic behavior occurs. For instance, let us consider
relative frequencies (q1, q2) = (1/2 + 1/N, 1/2− 1/N) for Example 1.18. This point q is close
to the singular point (1/2, 1/2). If we approximate the marginal likelihood integral using the
formula (1.27), then for large N ,

L(N) ≈
√
π

2
N−1/2 logN.

This N−1/2 logN behavior agrees up to a scalar with the asymptotics of the integral at the
point (1/2, 1/2). It suggests that singular learning theory is useful for understanding mar-
ginal likelihood integrals at regular data points which are close to singular ones.
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To summarize, in Sections 1.1–1.4, we introduced basic concepts from model selection and
Watanabe’s singular learning theory which are required for this dissertation. We discussed
the distinction between maximum likelihood and marginal likelihood integrals, and between
regular and singular models. We described some important classes of statistical models used
in this dissertation, such as discrete models, Gaussian models, and exponential families.
We saw that the key to deciphering a singular model is resolving the singularities of the
Kullback-Leibler function of the model at the true distribution.

In the last two sections, we described our main statistical contributions. In Section 1.5,
we defined a new general class of models, known as regularly parametrized models. We
also introduced fiber ideals for these models at given true distributions. We saw that for
regularly parametrized models, to desingularize the Kullback-Leibler function at the true
distribution, we only need to monomialize the corresponding fiber ideal. In Theorem 1.13
and Corollary 1.14, we gave details of the construction of this desingularization, and showed
that the last ingredient needed is principalization of the monomialized fiber ideal. We also
proved in Theorem 1.11 that the learning coefficient of the model is the real log canonical
threshold of the fiber ideal.

In Section 1.6, we studied the classic problem of estimating marginal likelihood integrals
for large-sample data without knowledge of the true distribution. Our aim was to use our new
techniques involving fiber ideals in approximating such integrals for regularly parametrized
exponential families. Theorem 1.17 stated how this can be accomplished when the maximum
likelihood estimate is natural. We finished this chapter with an example which uses many
of the new tools from this dissertation in computing the complete first term asymptotics
Cn−λ(log n)θ−1 of the marginal likelihood integral.

In recent years, there have been increasing interest in computing learning coefficients of
statistical models and applying them to the approximation of marginal likelihood integrals.
For example, Aoyagi, Watanabe and Yamazaki [2,60,61] has clarified this for certain classes
of mixture models and reduced-rank regression models, while Geiger and Rusakov [45] has ac-
complished this for näıve Bayesian networks with binary states. Their computations involve
finding real log canonical thresholds of functions rather than that of ideals. In Section 4.3,
we use the ideal-theoretic approach developed in this dissertation to simplify computations
of the learning coefficient of a mixture model with ternary features. This algebraic approach
was also applied by Zwiernik [63] in his analysis of learning coefficients of binary tree models.
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Chapter 2

Exact Evaluation

Evaluation of marginal likelihood integrals is central to Bayesian statistics. It is generally
assumed that these integrals cannot be evaluated exactly, except in trivial cases, and a wide
range of numerical techniques (e.g. MCMC) have been developed to obtain asymptotics and
numerical approximations [39]. The aim of this chapter is to show that exact integration is
more feasible than is surmised in the literature.

We examine marginal likelihood integrals for mixtures of discrete independence models
defined in Section 1.4.5. Bayesian inference for these models arises in many contexts, includ-
ing machine learning and computational biology. In Chapter 1, we described how recent work
in these fields has made a connection to singularities in algebraic geometry [15,45,57,60,61].
Our methods in this chapter complement those developments by providing tools for symbolic
integration when the sample size is small. The values of the integrals we study are rational
numbers, and exact evaluation means computing those rational numbers rather than floating
point approximations.

This chapter is organized as follows. In Section 2.1 we look at marginal likelihood inte-
grals of mixture models and investigate their basic properties. In Section 2.2 we examine the
Newton zonotopes of mixture models, and we derive formulas for marginal likelihood evalu-
ation using tools from geometric combinatorics. Our algorithms and their implementations
are described in detail in Section 2.3. Section 2.4 is concerned with applications in Bayesian
statistics. We show how Dirichlet priors can be incorporated into our approach, we discuss
the evaluation of Bayes factors, we compare our setup with that of [39], and we illustrate
the scope of our methods by computing an integral arising from a data set of [18].

This chapter is joint work with Bernd Sturmfels and Zhiqiang Xu. A preliminary draft
version was first published in Section 5.2 of the Oberwolfach lecture notes [16]. We refer
to that volume for further information on the use of computational algebra in Bayesian
statistics. A full version of this chapter was later published in [38].
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2.1 Independence Models and their Mixtures

Let M be the independence model defined in (1.16). We now consider marginal likelihood
integrals arising from this model. All our domains of integration in this chapter will be poly-
topes that are products of standard probability simplices. On each such polytope we fix the
standard Lebesgue probability measure. In other words, our discussion of Bayesian inference
refers to the uniform prior on each parameter space. Naturally, other prior distributions,
such as Dirichlet priors, are of interest, and our methods are extended to these in Section
2.4. In what follows, we simply work with uniform priors.

We identify the state space (1.14) with the set {1, . . . , n}. A data vector U = (U1, . . . , Un)
is thus an element of Nn. The sample size of these data is U1 + U2 + · · · + Un = N . If the
sample size N is fixed then the probability of observing these data is

LU(θ) =
N !

U1!U2! · · ·Un!
· p1(θ)

U1 · p2(θ)
U2 · · · · · pn(θ)Un .

This expression is a function on the polytope P which is known as the likelihood function of
the data U with respect to the independence model M. The marginal likelihood of the data
U with respect to the model M equals ∫

P

LU(θ) dθ.

The value of this integral is a rational number which we now compute explicitly. The data
U will enter this calculation by way of the sufficient statistic b = A · U , which is a vector
in Nd. The coordinates of this vector are denoted b

(i)
j for i = 1, . . . , k and j = 0, . . . , tk.

Thus b
(i)
j is the total number of times the value j is attained by one of the random variables

X
(i)
1 , . . . , X

(i)
si in the i-th group. Clearly, the sufficient statistics satisfy

b
(i)
0 + b

(i)
1 + · · ·+ b

(i)
ti = si ·N for all i = 1, 2, . . . , k. (2.1)

The likelihood function LU(θ) is the constant N !
U1!···Un!

times the monomial

θb =
k∏

i=1

ti∏
j=0

(θ
(i)
j )b

(i)
j .

The logarithm of this function is concave on the polytope P , and its maximum value is
attained at the point θ̂ with coordinates θ̂

(i)
j = b

(i)
j /(si ·N).

Lemma 2.1. The integral of the monomial θb over the polytope P equals∫
P

θbdθ =
k∏

i=1

ti! b
(i)
0 ! b

(i)
1 ! · · · b(i)ti !

(siN + ti)!
.

The product of this number with the multinomial coefficient N !/(U1! · · ·Un!) equals the
marginal likelihood of the data U for the independence model M.



CHAPTER 2. EXACT EVALUATION 40

Proof. Since P is the product of simplices (1.15), this follows from the formula∫
∆t

θb0
0 θ

b1
1 · · · θbt

t dθ =
t! · b0! · b1! · · · bt!

(b0 + b1 + · · ·+ bt + t)!
(2.2)

for the integral of a monomial over the standard probability simplex ∆t.

Now, we shift our focus to the mixture model M(2). Our objective is to compute marginal
likelihood integrals for this model. Recall that its parameter space is the polytope

Θ = ∆1 × P × P

and that the model is parametrized by

pv = σ0 · θav + σ1 · ρav for (σ, θ, ρ) ∈ Θ. (2.3)

The likelihood function of a data vector U ∈ Nn for M(2) equals

LU(σ, θ, ρ) =
N !

U1!U2! · · ·Un!
p1(σ, θ, ρ)U1 · · · pn(σ, θ, ρ)Un . (2.4)

The marginal likelihood of the data U with respect to the model M(2) equals∫
Θ

LU(σ, θ, ρ) dσdθdρ =
N !

U1! · · ·Un!

∫
Θ

∏
v

(σ0θ
av + σ1ρ

av)Uvdσ dθ dρ. (2.5)

The following proposition shows that we can evaluate this integral exactly.

Proposition 2.2. The marginal likelihood (2.5) is a rational number.

Proof. The likelihood function LU is a Q≥0-linear combination of monomials σaθbρc. The
integral (2.5) is the same Q≥0-linear combination of the numbers∫

Θ

σaθbρcdσ dθ dρ =
(∫

∆1

σadσ
)
·
(∫

P

θbdθ
)
·
(∫

P

ρcdρ
)
.

Each of the three factors is an easy-to-evaluate rational number, by (2.2).

Example 2.3. The integral (1.19) expresses the marginal likelihood of a 4×4-table of counts
U = (Uij) with respect to the mixture model M(2). Specifically, the marginal likelihood of
the data (1.20) equals the normalizing constant 40! · (2!)−12 · (4!)−4 times the number (1.21).
The model M(2) consists of all non-negative 4 × 4-matrices of rank ≤ 2 whose entries sum
to one. Note that here the parametrization (2.3) is not identifiable, because dim(M(2)) = 11
but dim(Θ) = 13. In this example, k = 2, s1=s2=1, t1=t2=3, d = 8, n = 16.

Example 2.4. Consider again the setup of Example 1.6. Using the methods to be described
in the next two sections, we computed the exact value of the marginal likelihood for the
data Ũ = (51, 18, 73, 25, 75) with respect to M(2). The rational number (2.5) is found to be
the ratio of two relatively prime integers having 530 digits and 552 digits, and its numerical
value is approximately 0.778871633883867861133574286090 · 10−22.
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2.2 Summation over a Zonotope

Our starting point is the observation that the Newton polytope of the likelihood function
(2.4) is a zonotope. Recall that the Newton polytope of a polynomial is the convex hull of
all exponent vectors appearing in the expansion of that polynomial, and a polytope is a
zonotope if it is the image of a standard cube under a linear map. See [12, §7] and [62, §7]
for further discussions. We are here considering the zonotope

ZA(U) =
n∑

v=1

Uv · [0, av],

where [0, av] represents the line segment between the origin and the point av ∈ Rd, and
the sum is a Minkowski sum of line segments. We write ZA = ZA(1, 1, . . . , 1) for the basic
zonotope spanned by the vectors av. Hence ZA(U) is obtained by stretching ZA along those
vectors by factors Uv respectively. Assuming that the counts Uv are all positive, we have

dim(ZA(U)) = dim(ZA) = rank(A) = d− k + 1. (2.6)

The zonotope ZA is related to the polytope P = conv(A) in (1.15) as follows. The dimension
d− k = t1 + · · ·+ tk of P is one less than dim(ZA), and P appears as the vertex figure of the
zonotope ZA at the distinguished vertex 0.

Remark 2.5. For higher mixtures M(l), the Newton polytope of the likelihood function is
isomorphic to the Minkowski sum of (l − 1)-dimensional simplices in R(l−1)d. Only when
l = 2, this Minkowski sum is a zonotope.

The marginal likelihood (2.5) we wish to compute is the integral∫
Θ

n∏
v=1

(σ0θ
av + σ1ρ

av)Uvdσdθdρ (2.7)

times the constant N !/(U1! · · ·Un!). Our approach to this computation is to sum over the
lattice points in the zonotope ZA(U). If the matrix A has repeated columns, we may replace
A with the reduced matrix Ã and U with the corresponding reduced data vector Ũ . If one
desires the marginal likelihood for the reduced data vector Ũ instead of the original data
vector U , the integral remains the same while the normalizing constant becomes

N !

Ũ1! · · · Ũñ!
· αŨ1

1 · · ·αŨñ
ñ ,

where αi is the number of columns in A equal to the i-th column of Ã. In what follows we
ignore the normalizing constant and focus on computing the integral (2.7) with respect to
the original matrix A.



CHAPTER 2. EXACT EVALUATION 42

For a vector b ∈ Rd
≥0 we let |b| denote its L1-norm

∑d
t=1 bt. Recall from (1.16) that all

columns of the d× n-matrix A have the same coordinate sum

a := |av| = s1 + s2 + · · ·+ sk, for all v = 1, 2, . . . , n,

and from (2.1) that we may denote the entries of a vector b ∈ Rd by b
(i)
j for i = 1, . . . , k and

j = 0, . . . , tk. Also, let L denote the image of the linear map A : Zn → Zd. Thus L is a
sublattice of rank d − k + 1 in Zd. We abbreviate ZL

A(U) := ZA(U) ∩ L. Now, using the
binomial theorem, we have

(σ0θ
av + σ1ρ

av)Uv =
Uv∑

xv=0

(
Uv

xv

)
σxv

0 σ
Uv−xv
1 θxv ·avρ(Uv−xv)·av .

Therefore, in the expansion of the integrand in (2.7), the exponents of θ are of the form of
b =

∑
v xvav ∈ ZL

A(U), 0 ≤ xv ≤ Uv. The other exponents may be expressed in terms of b.
This gives us

n∏
v=1

(σ0θ
av + σ1ρ

av)Uv =
∑

b∈ZL
A(U)

c=AU−b

φA(b, U) · σ|b|/a
0 · σ|c|/a

1 · θb · ρc. (2.8)

Writing D(U) = {(x1, . . . , xn) ∈ Zn : 0 ≤ xv ≤ Uv, v = 1, . . . , n}, the coefficient in (2.8) is

φA(b, U) =
∑
Ax=b

x∈D(U)

n∏
v=1

(
Uv

xv

)
. (2.9)

Thus, by formulas (2.2) and (2.8), the integral (2.7) evaluates to

∑
b∈ZL

A(U)
c=AU−b

φA(b, U) · (|b|/a)! (|c|/a)!

(|U |+ 1)!
·

k∏
i=1

(
ti! b

(i)
0 ! · · · b(i)ti !

(|b(i)|+ ti)!

ti! c
(i)
0 ! · · · c(i)ti !

(|c(i)|+ ti)!

)
. (2.10)

We summarize the result of this derivation in the following theorem.

Theorem 2.6. The marginal likelihood of the data U in the mixture model M(2) is equal to
the sum (2.10) times the normalizing constant N !/(U1! · · ·Un!).

Each individual summand in the formula (2.10) is a ratio of factorials and hence can be
evaluated symbolically. The challenge in turning Theorem 2.6 into a practical algorithm lies
in the fact that both of the sums (2.9) and (2.10) are over very large sets. We shall discuss
these challenges and present techniques from both computer science and mathematics for
addressing them.
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We first turn our attention to the coefficients φA(b, U) of the expansion (2.8). These
quantities are written as an explicit sum in (2.9). The first useful observation is that these
coefficients are also the coefficients of the expansion∏

v

(θav + 1)Uv =
∑

b∈ZL
A(U)

φA(b, U) · θb, (2.11)

which comes from substituting σi = 1 and ρj = 1 in (2.8). When the cardinality of ZL
A(U) is

sufficiently small, the quantity φA(b, U) can be computed quickly by expanding (2.11) using
a computer algebra system. We used Maple for this and all other symbolic computations
in this chapter.

If the expansion (2.11) is not feasible, then it is tempting to compute the individual
φA(b, U) via the sum-product formula (2.9). This method requires summation over the set
{x ∈ D(U) : Ax = b}, which is the set of lattice points in an (n − d + k − 1)-dimensional
polytope. Even if this loop can be implemented, performing the sum in (2.9) symbolically
requires the evaluation of many large binomials, causing the process to be rather inefficient.

An alternative is offered by the following recurrence formula:

φA(b, U) =
Un∑

xn=0

(
Un

xn

)
φA\an(b− xnan, U \ Un). (2.12)

This is equivalent to writing the integrand in (2.7) as(
n−1∏
v=1

(σ0θ
av + σ1ρ

av)Uv

)
(σ0θ

an + σ1ρ
an)Un .

More generally, for each 0 < i < n, we have the recurrence

φA(b, U) =
∑

b′∈ZL
A′ (U

′)

φA′(b′, U ′) · φA\A′(b− b′, U \ U ′),

where A′ and U ′ consist of the first i columns and entries of A and U respectively. This
corresponds to the factorization(

i∏
v=1

(σ0θ
av + σ1ρ

av)Uv

)(
n∏

v=i+1

(σ0θ
av + σ1ρ

av)Uv

)
.

This formula gives flexibility in designing algorithms with different payoffs in time and space
complexity, to be discussed in Section 2.3.

The next result records useful facts about the quantities φA(b, U).
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Proposition 2.7. Suppose b ∈ ZL
A(U) and c = AU − b. Then, the following quantities are

all equal to φA(b, U):
(1) #

{
z ∈ {0, 1}N : AUz = b

}
, where AU is the extended matrix

AU := (a1, . . . , a1︸ ︷︷ ︸
U1

, a2, . . . , a2︸ ︷︷ ︸
U2

, . . . , an, . . . , an︸ ︷︷ ︸
Un

),

(2) φA(c, U),
(3) ∑

Ax=b
lj≤xj≤uj

n∏
v=1

(
Uv

xv

)
,

where uj = min {Uj} ∪ {bm/ajm}n
m=1 and lj = Uj −min {Uj} ∪ {cm/ajm}n

m=1 .

Proof. (1) This follows directly from (2.11).
(2) For each z ∈ {0, 1}N satisfying AUz = b, note that z̄ = (1, 1, . . . , 1)− z satisfies AU z̄ = c,
and vice versa. The conclusion thus follows from (1).
(3) We require Ax = b and x ∈ D(U). If xj > uj = bm/ajm then ajmxj > bm, which implies
Ax 6= b. The lower bound is derived by a similar argument.

One aspect of our approach is the decision, for any given model A and data set U , whether
or not to attempt the expansion (2.11) using computer algebra. This decision depends on
the cardinality of the set ZL

A(U). In what follows, we compute the number exactly when A
is unimodular. When A is not unimodular, we obtain useful lower and upper bounds.

Let S be any subset of the columns of A. We call S independent if its elements are
linearly independent in Rd. With S we associate the integer

index(S) := [RS ∩ L : ZS].

This is the index of the abelian group generated by S inside the possibly larger abelian group
of all lattice points in L = ZA that lie in the span of S. The following formula is due to
R. Stanley and appears in [49, Theorem 2.2]:

Proposition 2.8. The number of lattice points in the zonotope ZA(U) equals

#ZL
A(U) =

∑
S⊆A indep.

index(S) ·
∏
av∈S

Uv. (2.13)

In fact, the number of monomials in (2.8) equals #MA(U), where MA(U) is the set
{b ∈ ZL

A(U) : φA(b, U) 6= 0}, and this set can be different from ZL
A(U). For that number we

have the following bounds. The proof, which uses methods in [49, §2], will be omitted here.
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Theorem 2.9. The number #MA(U) of monomials in the expansion (2.8) of the likelihood
function to be integrated satisfies the two inequalities∑

S⊆A indep.

∏
v∈S

Uv ≤ #MA(U) ≤
∑

S⊆A indep.

index(S) ·
∏
v∈S

Uv. (2.14)

By definition, the matrix A is unimodular if index(S) = 1 for all independent subsets S
of the columns of A. In this case, the upper bound coincides with the lower bound, and so
MA(U) = ZL

A(U). This happens in the classical case of two-dimensional contingency tables
(k = 2 and s1 = s2 = 1). In general, #ZL

A(U)/#MA(U) tends to 1 when all coordinates of U
tend to infinity. This is why we believe that for computational purposes, #ZL

A(U) is a good
approximation of #MA(U).

Remark 2.10. There exist integer matrices A for which #MA(U) does not agree with the
upper bound in Theorem 2.9. However, we conjecture that #MA(U) = #ZL

A(U) holds for
matrices A of Segre-Veronese type as in (1.16) and strictly positive data vectors U .

Example 2.11. Consider the 100 Swiss Francs example in Section 1.4.5. Here A is unimod-
ular and it has 16145 independent subsets S. The corresponding sum of 16145 squarefree
monomials in (2.13) gives the number of terms in the expansion of (1.22). For the data U
in (1.20) this sum evaluates to 3, 892, 097.

Example 2.12. We consider the matrix and data from Example 1.6.

Ã =

(
0 1 2 3 4
4 3 2 1 0

)
Ũ =

(
51, 18, 73, 25, 75

)
By Theorem 2.9, the lower bound is 22,273 and the upper bound is 48,646. Here the number
#MÃ(Ũ) of monomials agrees with the latter.

We next present a formula for index(S) when S is any linearly independent subset of the
columns of the matrix A. After relabeling we may assume that S = {a1, . . . , ak} consists
of the first k columns of A. Let H = V A denote the row Hermite normal form of A. Here
V ∈ SLd(Z) and H satisfies

Hij = 0 for i > j and 0 ≤ Hij < Hjj for i < j.

Hermite normal form is a built-in function in computer algebra systems. For instance, in
Maple the command is ihermite. Using the invertible matrix V , we may replace A with
H, so that RS becomes Rk and ZS is the image over Z of the upper left k× k-submatrix of
H. We seek the index of that lattice in the possibly larger lattice ZA ∩ Zk. To this end we
compute the column Hermite normal form H ′ = HV ′. Here V ′ ∈ SLn(Z) and H ′ satisfies

H ′
ij = 0 if i > j or j > d and 0 ≤ Hij < Hii for i < j.
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The lattice ZA ∩ Zk is spanned by the first k columns of H ′, and this implies

index(S) =
H11H22 · · · Hkk

H ′
11H

′
22 · · · H ′

kk

.

2.3 Algorithms

In this section we discuss algorithms for computing the integral (2.7) exactly, and we discuss
their advantages and limitations. In particular, we examine four main techniques which
represent the formulas (2.10), (2.11), (2.6) and (2.12) respectively. The practical performance
of the various algorithms is compared by computing the integral in Example 1.6.

A Maple library which implements our algorithms is made available at

http://math.berkeley.edu/∼shaowei/integrals.html.

The input for our Maple code consists of parameter vectors s = (s1, . . . , sk) and t =
(t1, . . . , tk) as well as a data vector U ∈ Nn. This input uniquely specifies the d× n-matrix
A. Here d and n are as in (1.13). The output features the matrices A and Ã, the marginal
likelihood integrals for M and M(2), as well as the bounds in (2.14).

We tacitly assume that A has been replaced with the reduced matrix Ã. Thus from
now on we assume that A has no repeated columns. This requires some care concerning the
normalizing constants. All columns of the matrix A have the same coordinate sum a, and
the convex hull of the columns is the polytope P = ∆t1 ×∆t2 × · · · ×∆tk . Our domain of
integration is the following polytope of dimension 2d− 2k + 1:

Θ = ∆1 × P × P.

We seek to compute the rational number∫
Θ

n∏
v=1

(σ0θ
av + σ1ρ

av)Uvdσdθdρ, (2.15)

where integration is with respect to Lebesgue probability measure. Our Maple code outputs
this integral multiplied with the statistically correct normalizing constant. That constant
will be ignored in what follows. In our complexity analysis, we fix A while allowing the data
U to vary. The complexities will be given in terms of the sample size N = U1 + · · ·+ Un.

2.3.1 Ignorance is Costly

Given an integration problem such as (2.15), a first attempt is to use the symbolic integration
capabilities of a computer algebra package such as Maple. We refer to this method as
ignorant integration:
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U := [51, 18, 73, 25, 75]:

f := (s*t^4 +(1-s)*p^4 )^U[1] *

(s*t^3*(1-t) +(1-s)*p^3*(1-p) )^U[2] *

(s*t^2*(1-t)^2+(1-s)*p^2*(1-p)^2)^U[3] *

(s*t *(1-t)^3+(1-s)*p *(1-p)^3)^U[4] *

(s *(1-t)^4+(1-s) *(1-p)^4)^U[5]:

II := int(int(int(f,p=0..1),t=0..1),s=0..1);

In the case of mixture models, recognizing the integral as the sum of integrals of monomi-
als over a polytope allows us to avoid the expensive integration step above by using (2.10).
To demonstrate the power of using (2.10), we implemented a simple algorithm that computes
each φA(b, U) using the naive expansion in (2.9). We computed the integral in Example 1.6
with a small data vector U = (2, 2, 2, 2, 2), which is the rational number

66364720654753

59057383987217015339940000
,

and summarize the run-times and memory usages of the two algorithms in the table below.
All experiments reported in this section are done in Maple.

Time(seconds) Memory(bytes)
Ignorant Integration 16.331 155,947,120

Naive Expansion 0.007 458,668

For the remaining comparisons in this section, we no longer consider the ignorant integration
algorithm because it is computationally too expensive.

2.3.2 Symbolic Expansion of the Integrand

While ignorant use of a computer algebra system is unsuitable for computing our integrals,
we can still exploit its powerful polynomial expansion capabilities to find the coefficients of
(2.11). A major advantage is that it is very easy to write code for this method. We compare
the performance of this symbolic expansion algorithm against that of the naive expansion
algorithm. The table below concerns computing the coefficients φA(b, U) for the original
data U = (51, 18, 73, 25, 75). The column “Extract” refers to the time taken to extract the
coefficients φA(b, U) from the expansion of the polynomial, while the column “Sum” shows
the time taken to evaluate (2.10) after all the needed values of φA(b, U) had been computed
and extracted.

Time(seconds) Memory
φA(b, U) Extract Sum Total (bytes)

Naive Expansion 2764.35 - 31.19 2795.54 10,287,268
Symbolic Expansion 28.73 962.86 29.44 1021.03 66,965,528
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2.3.3 Storage and Evaluation of φA(b, U)

Symbolic expansion is fast for computing φA(b, U), but it has two drawbacks: high memory
usage and the long time it takes to extract the values of φA(b, U). One solution is to create
specialized data structures and algorithms for expanding (2.11), rather using than those
offered by Maple.

First, we tackle the problem of storing the coefficients φA(b, U) for b ∈ ZL
A(U) ⊂ Rd as

they are being computed. One naive method is to use a d-dimensional array φ[·]. However,
noting that A is not row rank full, we can use a d0-dimensional array to store φA(b, U), where
d0 = rank(A) = d − k + 1. Furthermore, by Proposition 2.7(2), the expanded integrand is
a symmetric polynomial, so only half the coefficients need to be stored. We will leave out
the implementation details so as not to complicate our discussions. In our algorithms, we
will assume that the coefficients are stored in a d0-dimensional array φ[·], and the entry that
represents φA(b, U) will be referred to as φ[b].

Next, we discuss how φA(b, U) can be computed. One could use the naive expansion (2.9),
but this involves evaluating many binomials coefficients and products, so the algorithm
is inefficient for data vectors with large coordinates. A more efficient solution uses the
recurrence formula (2.12):

Algorithm 2.13 (RECURRENCE(A, U)).
Input: The matrix A and the vector U .
Output: The coefficients φA(b, U).
Step 1: Create a d0-dimensional array φ of zeros.
Step 2: For each x ∈ {0, 1, . . . , U1} set

φ[xa1] :=

(
U1

x

)
.

Step 3: Create a new d0-dimensional array φ′.
Step 4: For each 2 ≤ j ≤ n do

1. Set all the entries of φ′ to 0.
2. For each x ∈ {0, 1, . . . , Uj} do

For each non-zero entry φ[b] in φ do
Increment φ′[b+ xaj] by

(
Uj

x

)
φ[b].

3. Replace φ with φ′.
Step 5: Output the array φ.

The space complexity of this algorithm is O(Nd0) and its time complexity is O(Nd0+1).
By comparison, the naive expansion algorithm takes O(Nd) space and O(Nn+1) time.

We now turn our attention to computing the integral (2.15). One major issue is the
lack of memory to store all the terms of the expansion of the integrand. We overcome this
problem by writing the integrand as a product of smaller factors which can be expanded
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separately. In particular, we partition the columns of A into submatrices A[1], . . . , A[m] and
let U [1], . . . , U [m] be the corresponding partition of U . Thus the integrand becomes

m∏
j=1

∏
v

(σ0θ
a
[j]
v + σ1ρ

a
[j]
v )U

[j]
v ,

where a
[j]
v is the v-th column in A[j]. The resulting algorithm for evaluating the integral is:

Algorithm 2.14 (Fast Integral).
Input: The matrices A[1], . . . , A[m], vectors U [1], . . . , U [m] and the vector t.
Output: The value of the integral (2.15) in exact rational arithmetic.
Step 1: For 1 ≤ j ≤ m, compute φ[j] := RECURRENCE(A[j], U [j]).
Step 2: Set I := 0.
Step 3: For each non-zero entry φ[1][b[1]] in φ[1] do

...
For each non-zero entry φ[m][b[m]] in φ[m] do

Set b := b[1] + · · ·+ b[m], c := AU − b, φ :=
∏m

j=1 φ
[j][b[j]].

Increment I by

φ · (|b|/a)!(|c|/a)!
(|U |+1)!

·
∏k

i=1

ti! b
(i)
0 !···b(i)ti

!

(|b(i)|+ti)!

ti! c
(i)
0 !···c(i)ti

!

(|c(i)|+ti)!
.

Step 4: Output the sum I.

The algorithm can be sped up by precomputing the factorials used in the product in
Step 3. The space and time complexity of this algorithm is O(NS) and O(NT ) respectively,
where S = maxi rankA[i] and T =

∑
i rankA[i]. From this, we see that the splitting of the

integrand should be chosen wisely to achieve a good pay-off between the two complexities.
In the table below, we compare the naive expansion algorithm and the fast integral

algorithm for the data U = (51, 18, 73, 25, 75). We also compare the effect of splitting the
integrand into two factors, as denoted by m = 1 and m = 2. For m = 1, the fast integral
algorithm takes significantly less time than naive expansion, and requires only about 1.5
times more memory.

Time(minutes) Memory(bytes)
Naive Expansion 43.67 9,173,360

Fast Integral (m=1) 1.76 13,497,944
Fast Integral (m=2) 139.47 6,355,828

2.3.4 Limitations and Applications

While our algorithms are optimized for exact evaluation of integrals for mixtures of inde-
pendence models, they may not be practical for applications involving large sample sizes.
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Figure 2.1: Comparison of computation time against sample size.

To demonstrate their limitations, we vary the sample sizes in Example 1.6 and compare the
computation times. The data vectors U are generated by scaling U = (51, 18, 73, 25, 75)
according to the sample size N and rounding off the entries. Here, N is varied from 110
to 300 by increments of 10. Figure 2.1 shows a logarithmic plot of the results. The times
taken for N = 110 and N = 300 are 3.3 and 98.2 seconds respectively. Computation times
for larger samples may be extrapolated from the graph. Indeed, a sample size of 5000 could
take more than 13 days.

For other models, such as the 100 Swiss Francs model in Section 1.4.5 and that of the
schizophrenic patients in Example 2.20, the limitations are even more apparent. In the table
below, for each example we list the sample size, computation time, rank of the corresponding
A-matrix and the number of terms in the expansion of the integrand. Despite having smaller
sample sizes, the computations for the latter two examples take a lot more time. This may
be attributed to the higher ranks of the A-matrices and the larger number of terms that
need to be summed up in our algorithm.

Size Time Rank #Terms
Coin Toss 242 45 sec 2 48,646

100 Swiss Francs 40 15 hrs 7 3,892,097
Schizophrenic Patients 132 16 days 5 34,177,836

Despite their high complexities, we believe that our algorithms are important because
they provide a gold standard with which approximation methods such as those studied in [39]
can be compared. Below, we use our exact methods to ascertain the accuracy of asymptotic
formula derived in [57] and [60,61] using desingularization methods from algebraic geometry.
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Example 2.15. We revisit the model from Example 1.6. Let us consider data vectors U =
(U0, U1, U2, U3, U4) with Ui = Nqi where N is a multiple of 16 and

qi =
1

16

(
4

i

)
, i = 0, 1, . . . , 4.

Let IN(U) be the integral (2.15). Define

FN(U) = N

4∑
i=0

qi log qi − log IN(U).

According to [61], for large N we have the asymptotics

EU [FN(U)] =
3

4
logN +O(1) (2.16)

where the expectation EU is taken over all U with sample size N under the distribution
defined by q = (q0, q1, q2, q3, q4). Thus, we should expect

F16+N − FN ≈ 3

4
log(16 +N)− 3

4
logN =: g(N).

We compute F16+N − FN using our exact methods and list the results below.

N F16+N − FN g(N)
16 0.21027043 0.225772497
32 0.12553837 0.132068444
48 0.08977938 0.093704053
64 0.06993586 0.072682510
80 0.05729553 0.059385934
96 0.04853292 0.050210092
112 0.04209916 0.043493960

Clearly, the table supports our conclusion. The coefficient 3/4 of logN in the formula (2.16)
is the learning coefficient of the statistical model, which was discussed in Section 1.3.2. By
Theorem 1.11, this coefficient equals the real log canonical threshold of the polynomial ideal

〈σ0θ
3
0θ1 + σ1ρ

3
0ρ1 − 1/16, σ0θ

2
0θ

2
1 + σ1ρ

2
0ρ

2
1 − 1/16,

σ0θ0θ
3
1 + σ1ρ0ρ

3
1 − 1/16, σ0θ

4
1 + σ1ρ

4
1 − 1/16〉.

The example suggests that Proposition 4.2a could be developed into a numerical technique
for computing the real log-canonical thresholds of polynomial ideals.
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2.4 Back to Bayesian Statistics

In this section we discuss how the exact integration approach presented here interfaces with
issues in Bayesian statistics. The first concerns the rather restrictive assumption that our
marginal likelihood integral be evaluated with respect to the uniform distribution (Lebesgue
measure) on the parameter space Θ. It is standard practice to compute such integrals with
respect to Dirichlet priors, and we shall now explain how our algorithms can be extended to
Dirichlet priors. That extension is also available as a feature in our Maple implementation.

Recall that the Dirichlet distribution Dir(α) is a continuous probability distribution
parametrized by a vector α = (α0, α1, . . . , αm) of positive reals. It is the multivariate
generalization of the beta distribution and is conjugate prior (in the Bayesian sense) to the
multinomial distribution. This means that the probability distribution function of Dir(α)
specifies the belief that the probability of the i-th among m + 1 events equals θi given that
it has been observed αi − 1 times. More precisely, the probability density function f(θ;α)
of Dir(α) is supported on the m-dimensional simplex

∆m =
{

(θ0, . . . , θm) ∈ Rm
≥0 : θ0 + · · ·+ θm = 1

}
,

and it equals

f(θ0, . . . , θm;α0, . . . , αm) =
1

B(α)
· θα0−1

0 θα1−1
1 · · · θαm−1

m =:
θα−1

B(α)
.

Here the normalizing constant is the multinomial beta function

B(α) =
m!Γ(α0)Γ(α1) · · ·Γ(αm)

Γ(α0 + α1 + · · ·+ αm)
.

Note that, if the αi are all integers, then this is the rational number

B(α) =
m!(α0 − 1)!(α1 − 1)! · · · (αm − 1)!

(α0 + · · ·+ αm − 1)!
.

Thus the identity (2.2) is the special case of the identity
∫

∆m
f(θ;α)dθ = 1 for the density

of the Dirichlet distribution when all αi = bi + 1 are integers.
We now return to the marginal likelihood for mixtures of independence models. To

compute this quantity with respect to Dirichlet priors means the following. We fix positive
real numbers α0, α1, and β

(i)
j and γ

(i)
j for i = 1, . . . , k and j = 0, . . . , ti. These specify

Dirichlet distributions on ∆1, P and P . Namely, the Dirichlet distribution on P given by
the β

(i)
j is the product probability measure given by taking the Dirichlet distribution with

parameters (β
(i)
0 , β

(i)
1 , . . . , β

(i)
ti ) on the i-th factor ∆ti in the product (1.15) and similarly for

the γ
(i)
j . The resulting product probability distribution on the polytope Θ = ∆1 × P × P is
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called the Dirichlet distribution with parameters (α, β, γ). Its probability density function
is the product of the respective densities:

f(σ, θ, ρ;α, β, γ) =
σα−1

B(α)
·

k∏
i=1

(θ(i))β(i)−1

B(β(i))
·

k∏
i=1

(ρ(i))γ(i)−1

B(γ(i))
. (2.17)

By the marginal likelihood with Dirichlet priors we mean the integral∫
Θ

LU(σ, θ, ρ) f(σ, θ, ρ;α, β, γ)dσdθdρ. (2.18)

This is a modification of (2.5) and it depends not just on the data U and the model M(2)

but also on the choice of Dirichlet parameters (α, β, γ). When the coordinates of these
parameters are arbitrary positive reals but not integers, then the value of the integral (2.18)
is no longer a rational number. Nonetheless, it can be computed exactly as follows. We
abbreviate the product of Gamma functions in the denominator of the density (2.17) as

B(α, β, γ) := B(α) ·
k∏

i=1

B(β(i)) ·
k∏

i=1

B(γ(i)).

Instead of the integrand (2.8) we now need to integrate∑
b∈ZL

A(U)
c=AU−b

φA(b, U)

B(α, β, γ)
· σ|b|/a+α0−1

0 · σ|c|/a+α1−1
1 · θb+β−1 · ρc+γ−1

with respect to Lebesgue probability measure on Θ. Doing this term by term, as before, we
obtain the following modification of Theorem 2.6.

Corollary 2.16. The marginal likelihood of the data U in the mixture model M(2) with
respect to Dirichlet priors with parameters (α, β, γ) equals

N !
U1!···Un!·B(α,β,γ)

·
∑

b∈ZL
A(U)

c=AU−b

φA(b, U) Γ(|b|/a+α0)Γ(|c|/a+α1)
Γ(|U |+|α|)

·
∏k

i=1

( ti!Γ(b
(i)
0 +β

(i)
0 )···Γ(b

(i)
ti

+β
(i)
ti

)

Γ(|b(i)|+|β(i)|)
ti!Γ(c

(i)
0 +γ

(i)
0 )···Γ(c

(i)
ti

+γ
(i)
ti

)

Γ(|c(i)|+|γ(i)|)

)
.

A well-known experimental study [39] compares different methods for computing numeri-
cal approximations of marginal likelihood integrals. The model considered in the study is the
naive-Bayes model, which, in the language of algebraic geometry, corresponds to arbitrary
secant varieties of Segre varieties. In this chapter we considered the first secant variety of
arbitrary Segre-Veronese varieties. In what follows we restrict our discussion to the intersec-
tion of both classes of models, namely, to the first secant variety of Segre varieties. For the
remainder of this section we fix

s1 = s2 = · · · = sk = 1
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but we allow t1, t2, . . . , tk to be arbitrary positive integers. Thus in the model of [39, Equation
1], we fix rC = 2, and the n there corresponds to our k.

To keep things as simple as possible, we shall fix the uniform distribution as in Sections
2.1–2.3 above. Thus, in the notation of [39, §2], all Dirichlet hyperparameters αijk are set to
1. This implies that, for any data U ∈ Nn and any of our models, the problem of finding the
maximum a posteriori (MAP) configuration is equivalent to finding the maximum likelihood
(ML) configuration. To be precise, the MAP configuration is the point (σ̂, θ̂, ρ̂) in Θ which
maximizes the likelihood function LU(σ, θ, ρ) in (2.4). This maximum may not be unique,
and there will typically be many local maxima. Chickering and Heckerman [39, §3.2] used
the EM algorithm [41, §1.3] to approximate the MAP configuration numerically.

The Laplace approximation and the BIC score (Section 1.3.1) depend on the idea that the
MAP configuration can be found with high accuracy and that the data U were actually drawn
from the corresponding distribution p(σ̂, θ̂, ρ̂). Let H(σ, θ, ρ) denote the Hessian matrix of
the log-likelihood function log L(σ, θ, ρ). Then the Laplace approximation [39, Equation 15]
states that the logarithm of the marginal likelihood can be approximated by

log L(σ̂, θ̂, ρ̂) − 1

2
log|det H(σ̂, θ̂, ρ̂)| +

2d− 2k + 1

2
log(2π). (2.19)

The Bayesian information criterion (BIC) suggests the coarser approximation

log L(σ̂, θ̂, ρ̂) − 2d− 2k + 1

2
log(N), (2.20)

where N = U1 + · · ·+ Un is the sample size.
In algebraic statistics, we do not content ourselves with the output of the EM algorithm

but, to the extent possible, we seek to actually solve the likelihood equations [30] and compute
all local maxima of the likelihood function. We consider it a difficult problem to reliably find
(σ̂, θ̂, ρ̂), and we are concerned about the accuracy of approximations like (2.19) or (2.20).

Example 2.17. Consider the 100 Swiss Francs table (1.20) discussed in Section 1.4.5. Here
k = 2, s1 = s2 = 1, t1 = t2 = 3, the matrix A is unimodular, and (1.17) is the Segre
embedding P3 × P3 ↪→ P15. The parameter space Θ is 13-dimensional, but the model M(2)

is 11-dimensional, so the given parametrization is not identifiable [19]. This means that the
Hessian matrix H is singular, and hence the Laplace approximation (2.19) is not defined.

Example 2.18. We compute (2.19) and (2.20) for the model and data in Example 1.6.
According to [30, Example 9], the likelihood function p51

0 p
18
1 p

73
2 p

25
3 p

75
4 has three local maxima

(p̂0, p̂1, p̂2, p̂3, p̂4) in the model M(2), and these translate into six local maxima (σ̂, θ̂, ρ̂) in the
parameter space Θ, which is the 3-cube. The two global maxima are

(0.3367691969, 0.0287713237, 0.6536073424),

(0.6632308031, 0.6536073424, 0.0287713237).
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Both of these points in Θ give the same point in the model:

(p̂0, p̂1, p̂2, p̂3, p̂4) = (0.12104, 0.25662, 0.20556, 0.10758, 0.30920).

The likelihood function evaluates to 0.1395471101× 10−18 at this point. The following table
compares the various approximations. Here, “Actual” refers to the base-10 logarithm of the
marginal likelihood in Example 1.6.

BIC -22.43100220
Laplace -22.39666281
Actual -22.10853411

The method for computing the marginal likelihood which was found to be most accurate
in the experimental study is the candidate method [39, §3.4]. This is a Monte-Carlo method
which involves running a Gibbs sampler. The basic idea is that one wishes to compute a
large sum, such as (2.10) by sampling among the terms rather than listing all terms. In the
candidate method one uses not the sum (2.10) over the lattice points in the zonotope but the
more naive sum over all 2N hidden data that would result in the observed data represented
by U . The value of the sum is the number of terms, 2N , times the average of the summands,
each of which is easy to compute. A comparison of the results of the candidate method
with our exact computations, as well as a more accurate version of Gibbs sampling which is
adapted for (2.10), will be the subject of a future study.

One of the applications of marginal likelihood integrals lies in model selection. An im-
portant concept in that field is that of Bayes factors. Given data and two competing models,
the Bayes factor is the ratio of the marginal likelihood integral of the first model over the
marginal likelihood integral of the second model. In our context it makes sense to form
that ratio for the independence model M and its mixture M(2). To be precise, given any
independence model, specified by positive integers s1, . . . , sk, t1, . . . , tk and a corresponding
data vector U ∈ Nn, the Bayes factor is the ratio of the marginal likelihood in Lemma 2.1
and the marginal likelihood in Theorem 2.6. Both quantities are rational numbers and hence
so is their ratio.

Corollary 2.19. The Bayes factor which discriminates between the independence model M
and the mixture model M(2) is a rational number. It can be computed exactly using Algorithm
2.14 (and our Maple-implementation).

Example 2.20. We conclude by applying our method to a data set taken from the Bayesian
statistics literature. The study in [18, §3] analyzed the association between length of hospital
stay (in years Y ) of 132 schizophrenic patients and the frequency with which they are visited
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by relatives. Their data set is the following 3×3 contingency table:

U =

2≤Y <10 10≤Y <20 20≤Y Totals
Visited regularly 43 16 3 62

Visited rarely 6 11 10 27
Visited never 9 18 16 43

Totals 58 45 29 132

(2.21)

They present estimated posterior means and variances for these data, where “each estimate
requires a 9-dimensional integration” [18, p. 561]. Computing their integrals is essentially
equivalent to ours, for k = 2, s1 = s2 = 1, t1 = t2 = 2 and N = 132. The authors emphasize
that “the dimensionality of the integral does present a problem” [18, p. 562], and they point
out that “all posterior moments can be calculated in closed form .... however, even for modest
N these expressions are far to complicated to be useful” [18, p. 559].

We differ on that conclusion. In our view, the closed form expressions in Section 2.2
are quite useful for modest sample size N . Using Algorithm 2.14, we computed the integral
(2.15). It is the rational number with numerator

278019488531063389120643600324989329103876140805
285242839582092569357265886675322845874097528033
99493069713103633199906939405711180837568853737

and denominator

12288402873591935400678094796599848745442833177572204
50448819979286456995185542195946815073112429169997801
33503900169921912167352239204153786645029153951176422
43298328046163472261962028461650432024356339706541132
34375318471880274818667657423749120000000000000000.

To obtain the marginal likelihood for the data U above, that rational number (of moderate
size) still needs to be multiplied with the normalizing constant

132!

43! · 16! · 3! · 6! · 11! · 10! · 9! · 18! · 16!
.

In this chapter, we studied marginal likelihood integrals for mixtures of independence
models, and our main contribution is a formula for this integral as a sum over lattice points
of a zonotope. To evaluate this formula efficiently and exactly, we prescribed various tricks,
including a recurrence relation for the coefficients φA(b, U). We counted the number of lattice
points in the zonotope, as a measure of the computational complexity of this evaluation. Last
but not least, we extended our results to compute integrals with respect to Dirichlet priors.
These exact results complement recent developments in the approximation of such integrals
using asymptotic theory, including the approach described in the chapters that follow.
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Chapter 3

Asymptotic Theory

In this chapter, we study the full asymptotic expansion of Laplace integrals of the form

Z(n) =

∫
Ω

e−nf(ω)ϕ(ω)dω, n→∞ (3.1)

given some analyticity conditions on Ω, f and ϕ. The case where Ω = Rd and ϕ is smooth
with compact support was studied intensively in relation to oscillatory integrals by Arnol’d,
Gusĕın-Zade and Varchenko [3, §6-7]. They showed that Z(n) has the asymptotic expansion

Z(n) ≈
∑

α

d∑
i=1

cα,in
−α(log n)i−1 (3.2)

where the α are positive rational numbers and the cα,i are real constants. Unfortunately, in
Bayesian statistics we often encounter integrals where Ω is a semianalytic set, i.e.

Ω = {ω ∈ Rd : g1(ω) ≥ 0, . . . , gl(ω) ≥ 0}

is defined by real analytic inequalities. Furthermore, critical points of the phase function f
may lie on the boundary of Ω. Therefore, we are interested primarily in two questions:

1. Do our Bayesian integrals also have asymptotic expansions of the form (3.2)?

2. If so, how do we compute the exponents and coefficients of this expansion?

It turns out that the key idea is simultaneous resolution of the singularities of the phase
function and the boundary inequalities. Together with a standard treatment of zeta functions
and their transforms, we will be able to answer these questions. In Section 3.1, we explore
different formulations of Hironaka’s theorem on the resolution of singularities which will
be used in this dissertation. In Section 3.2, we study local and global properties of zeta
functions. Mellin and Laplace transforms will be discussed in Section 3.3. Finally, in Section
3.4, we apply these transforms to our zeta functions to get the asymptotic expansion results.
Some of these results have been published in a preprint [37].
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Remark 3.1. The idea of applying simultaneous resolutions to semianalytic sets is due to
Watanabe [58], but many of the results in this chapter were derived independently of his
work. In [58, Remark 4.5], Watanabe comments that integrals over semianalytic subsets Ω
do indeed have asymptotic expansions of the form (3.2). His expression for the coefficients
of this expansion takes a different form from our expression in Theorem 3.16.

Remark 3.2. When we say that Z(n) has an asymptotic expansion (3.2), we mean that for
each α0 > 0 and i0 > 0, as n→∞, we have

Z(n)−
∑

(α,i)<(α0,i0)

cα,in
−α(log n)i−1 = O(n−α0(log n)i0−1).

Here, the pairs (α, i) in the sum are reverse-ordered by the value of n−α0(log n)i0−1 for large
n, and O( · ) is the big-O notation.

However, for a fixed integer n > 0, it is not necessarily true that the infinite series (3.2)
converges to Z(n). For instance, by Corollary 5.8, we have the equality

Z1(n) :=

∫
R
e−nx2

dx =
√
πn−1/2.

Changing the domain of integration from R to the interval [−1, 1] and using Theorem 3.16,
we can show that, as n→∞,

Z2(n) :=

∫ 1

−1

e−nx2

dx ≈
√
πn−1/2.

This is the full asymptotic expansion of Z2(n), but Z2(n) < Z1(n) =
√
πn−1/2.

Let us introduce some notation for the rest of this chapter. Given x ∈ Rd, let Ax(Rd) be
the ring of real-valued functions f : Rd → R that are analytic at x. We sometimes shorten
the notation to Ax when it is clear we are working with Rd. When x = 0, it is convenient of
think of A0 as a subring of the formal power series ring R[[ω1, . . . , ωd]] = R[[ω]]. It consists
of power series which are convergent in some neighborhood of the origin. For all x, Ax ' A0

by translation. Now, given a subset Ω ⊂ Rd, let AΩ be the ring of real functions analytic at
each point x ∈ Ω. Locally, each function can be represented as a power series centered at x.
Given f ∈ AΩ, define the analytic variety VΩ(f) = {ω ∈ Ω : f(ω) = 0} while for an ideal
I ⊂ AΩ, we set VΩ(I) = ∩f∈IVΩ(f). Let Γ represent the Gamma function and Γ(i) its i-th
derivative. Let the vector 1 represent the all-ones vector. Lastly, given a finite set S ⊂ R,
let #minS denote the number of times the minimum is attained in S.

3.1 Resolution of Singularities

Hironaka’s celebrated theorem [29] on the resolution of singularities is a deep result in alge-
braic geometry. It was first proved in 1964 and since then, many different variations of this
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theorem has been developed. The version we state below is due to Atiyah [4] and was used
by Watanabe [58, Theorem 2.3] in constructing singular learning theory.

Theorem 3.3 (Resolution of Singularities). Let f be a non-constant real analytic function in
some neighborhood Ω ⊂ Rd of the origin with f(0) = 0. There exists a triple (M,W, ρ) where

a. W ⊂ Ω is a neighborhood of the origin,

b. M is a d-dimensional real analytic manifold,

c. ρ : M → W is a real analytic map,

satisfying the following properties:

i. ρ is proper, i.e. the inverse image of any compact set is compact,

ii. ρ is a real analytic isomorphism between M \ VM(f ◦ ρ) and W \ VW (f),

iii. for any y ∈ VM(f ◦ρ), there exists a local chart My with coordinates µ = (µ1, µ2, . . . µd)
such that y is the origin and

f ◦ ρ(µ) = a(µ)µκ1
1 µ

κ2
2 · · ·µκd

d = a(µ)µκ

where κ1, κ2, . . . , κd are non-negative integers and a is a real analytic function with
a(µ) 6= 0 for all µ. Furthermore, the Jacobian determinant equals

|ρ′(µ)| = h(µ)µτ1
1 µ

τ2
2 · · ·µ

τd
d = h(µ)µτ

where τ1, τ2, . . . , τd are non-negative integers and h is a real analytic function with
h(µ) 6= 0 for all µ.

We say that (M,W, ρ) is a resolution of singularities or a desingularization of f at the
origin. In fact, we can desingularize a list of functions simultaneously.

Corollary 3.4 (Simultaneous Resolutions). Let f1, . . . , fl be non-constant real analytic func-
tions in some neighborhood Ω ⊂ Rd of the origin with all fi(0) = 0. Then there exists a triple
(M,W, ρ) that desingularizes each fi at the origin.

Proof. The idea is to desingularize the product f1(ω) · · · fl(ω) and to show that this resolution
is also a resolution for each fi. See [57, Thm 11] and [25, Lemma 2.3] for details.

Resolution of singularities for a function is synonymous with its monomialization. Given
a finitely generated ideal I in the ringAW of real analytic functions over W , we can also find a
map ρ : M → W that monomializes the ideal, i.e. the pullback ideal ρ∗I = {f ◦ρ ∈ AM : f ∈
I} in each chart of M is generated by monomial functions. One näıve way to prove this result
is to simultaneously resolve a system of generators f1, . . . , fr for I, which is equivalent to
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resolving their product f1 · · · fr. So it seems that we only need to know how to monomialize
functions. However, as pointed out by Bierstone and Milman [5], Hironaka’s inductive proof
eventually involves passing to higher codimensional varieties defined by multiple functions,
and taking the product of these functions breaks the induction.

In this dissertation, we have chosen to take a coordinate-dependent perspective on the
resolution of singularities. Indeed, we speak of coordinate charts on manifolds such that the
function of interest is monomial. We have also chosen to study a local version of the resolution
theorem by focusing on desingularizing a function at the origin. There is a natural geometric
extension of these concepts to schemes, ideal sheafs and divisors. For instance, the ideal sheaf
of a normal crossing divisor is one which can be represented locally as a principal monomial
ideal. Below, we state Kollár’s version of the theorem on the strong monomialization of ideal
sheafs. We will not define the terms from algebraic geometry appearing here, but refer the
reader to Kollár’s book [34] on this subject. Other good expositions on the technical scope
and algorithmic aspects of resolutions of singularities have been written by Hauser [28],
Bierstone and Milman [6] and Bravo, Encinas and Villamayor [11].

Theorem 3.5 ( [34], Thm 3.35). There is a blowup sequence functor BP defined on all
triples (X, I, E), where X is a smooth scheme of finite type over a field of characteristic
zero, I ⊂ OX is an ideal sheaf that is not zero on any irreducible component of X and E is
a simple normal crossing divisor on X. The functor BP satisfies the following conditions.

1. In the blowup sequence BP(X, I, E) =

Π : Xr
πr−1−−→ Xr−1

πr−2−−→ · · · π1−→ X1
π0−→ X0 = X,

∪ ∪ ∪
Zr−1 · · · Z1 Z0

all centers of blowups are smooth and have simple normal crossing with E.

2. The pullback Π∗I ⊂ OXr is the ideal sheaf of a simple normal crossing divisor.

3. Π : Xr → X is an isomorphism over X \ cosupp I.

4. BP commutes with smooth morphisms and with change of fields.

5. BP commutes with closed embeddings whenever E = ∅.
Because resolution of singularities is an algorithmically delicate process, there are only a

few software libraries available for computing desingularizations of functions or ideals. The
first such library was written in 2000 by Bodnár and Schicho [9, 10] in Maple. Since then,
Frühbis-Krüger and Pfister [20] has written another implementation in Singular that is
faster and uses fewer charts. Typically, computing a resolution of singularities using these
libraries for our statistical examples, such as the one in Section 4.3, take an extremely long
time unless we apply some clever tricks to simplify the problem. A large number of charts are
also produced in the process. Our dissertation hopes to ease both problems by emphasizing
the use of fiber ideals in desingularizing statistical models (see Section 1.5).
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3.2 Zeta Functions

In this section, we derive real log canonical thresholds of monomial functions, and demon-
strate how resolution of singularities allows us to find the thresholds of non-monomial func-
tions. We show that the global threshold of a function over a compact set is the minimum of
local thresholds, and present an example where the threshold at a boundary point depend
on the boundary inequalities. We end this section with a conjecture about the location of
singularities with the smallest threshold.

Recall that in Section 1.3.2, we provided an informal definition of the real log canonical
threshold (RLCT) of a function. To make this definition formal, we need to discuss why the
zeta function is meromorphic over the whole complex plane and why all its poles are real.
This is one of the goals of this section.

Definition 3.6. Given a compact subset Ω of Rd, a function f ∈ AΩ which is real analytic
over Ω, and a smooth function ϕ : Ω → R, consider the zeta function

ζ(z) =

∫
Ω

∣∣f(ω)
∣∣−z |ϕ(ω)| dω, z ∈ C. (3.3)

This function is well-defined for z ∈ R≤0. If ζ(z) can be continued analytically to the whole
complex plane C, then all its poles are isolated points in C. Moreover, if all its poles are
real, then it has a smallest pole λ which is positive. Let θ be the multiplicity of this pole.
The pole λ is the real log canonical threshold of f with respect to ϕ over Ω. If ζ(z) has no
poles, we set λ = ∞ and leave θ undefined. Let RLCTΩ(f ;ϕ) be the pair (λ, θ). By abuse of
notation, we sometimes refer to this pair as the real log canonical threshold of f . We order
these pairs such that (λ1, θ1) < (λ2, θ2) if for sufficiently large n,

λ1 log n− θ1 log log n < λ2 log n− θ2 log log n.

In other words, (λ1, θ1) < (λ2, θ2) if λ1 > λ2, or λ1 = λ2 and θ1 < θ2. Lastly, we let RLCTΩ f
denote RLCTΩ(f ; 1) where 1 is the constant unit function.

Necessary analyticity conditions on f , ϕ and Ω such that the real log canonical threshold
is well-defined will be given in Corollary 3.10.

3.2.1 Monomialization

There is a simple class of functions, namely monomials ωκ1
1 · · ·ωκd

d = ωκ, for which it is easy
to compute the real log canonical threshold.

Proposition 3.7. Let Ω be the positive orthant Rd
≥0 and φ : Ω → R be a compactly supported

smooth function with φ(0) > 0. Suppose κ = (κ1, . . . , κd) and τ = (τ1, . . . , τd) are vectors of
non-negative integers. Then, RLCTΩ(ωκ;ωτφ) = (λ, θ) where

λ = min
1≤j≤d

{τj + 1

κj

}, θ = # min
1≤j≤d

{τj + 1

κj

}.
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Proof. See [3, Lemma 7.3]. The idea is to express φ(ω) as Ts(ω)+Rs(ω) where Ts is the s-th
degree Taylor polynomial and Rs the difference. We then integrate the main term |f |−z Ts

explicitly and show that the integral of the remaining term |f |−zRs does not have larger
poles. This process gives the analytic continuation of ζ(z) to the whole complex plane, so
we have the Laurent expansion

ζ(z) =
∑
α>0

d∑
i=1

dα,i

(z − α)i
+ P (z) (3.4)

where the poles α are positive rational numbers and P (z) is a polynomial.

For non-monomial f(ω), Hironaka’s theorem allows us to reduce it to the monomial case.
Moreover, we can show that the presence of a positive smooth factor in the amplitude does
not change the real log canonical threshold. For the rest of this section, let

Ω = {ω ∈ Rd : g1(ω) ≥ 0, . . . , gl(ω) ≥ 0}

be compact and semianalytic. We also assume that f, ϕ ∈ AΩ.

Lemma 3.8. For each x ∈ Ω, there is a neighborhood Ωx of x in Ω such that for all smooth
functions φ on Ωx with φ(x) > 0,

RLCTΩx(f ;ϕφ) = RLCTΩx(f ;ϕ).

This real log canonical threshold is a positive rational number.

Proof. Let x ∈ Ω. If f(x) 6= 0, then by the continuity of f , there exists a small neighborhood
Ωx where 0 < c1 < |f(ω)| < c2 for some constants c1, c2. Hence, for all smooth functions φ,
the zeta functions∫

Ωx

∣∣f(ω)
∣∣−z|ϕ(ω)φ(ω)| dω and

∫
Ωx

∣∣f(ω)
∣∣−z|ϕ(ω)| dω

do not have any poles, so the lemma follows in this case.
Suppose f(x) = 0. By Corollary 3.4, we have a simultaneous local resolution of singular-

ities (M,W, ρ) for the functions f, ϕ, g1, . . . , gl vanishing at x. For each point y in the fiber
ρ−1(x), we have a local chart satisfying property (iii) of Theorem 3.3. Since ρ is proper, the
fiber ρ−1(x) is compact so there is a finite subcover {My}. We claim that the image ρ(

⋃
My)

contains a neighborhood Wx of x in Rd. Indeed, otherwise, there exists a bounded sequence
{x1, x2, . . .} of points in W \ ρ(

⋃
My) whose limit is x. We pick a sequence {y1, y2, . . .}

such that ρ(yi) = xi. Since the xi are bounded, the yi lie in a compact set so there is a
convergent subsequence with limit y∗. The yi are not in the open set

⋃
My so nor is y∗. But

ρ(y∗) = lim ρ(yi) = x so y∗ ∈ ρ−1(x) ⊂My, a contradiction.
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Now, define Ωx = Wx ∩Ω and let {My} be the collection of all sets My = My ∩ ρ−1(Ωx)
which have positive measure. Picking a partition of unity {σy(µ)} subordinate to {My} such
that σy is positive at each y, we write the zeta function ζ(z) =

∫
Ωx
|f(ω)|−z|ϕ(ω)φ(ω)| dω as

∑
y

∫
My

∣∣f ◦ ρ(µ)
∣∣−z |ϕ ◦ ρ(µ)||φ ◦ ρ(µ)||ρ′(µ)|σy(µ) dµ.

For each y, the boundary conditions gi ◦ ρ(µ) ≥ 0 become monomial inequalities, so My is
the union of orthant neighborhoods of y. The integral over My can thus be expressed as a
sum of integrals of the form

ζy(z) =

∫
Rd
≥0

µ−κz+τψ(µ)dµ

where κ and τ are non-negative integer vectors while ψ is a compactly supported smooth
function with ψ(0) > 0. Note that κ and τ do not depend on φ nor on the choice of orthant
at y. By Proposition 3.7, the smallest pole of ζy(z) is

λy = min
1≤j≤d

{τj + 1

κj

}, θy = # min
1≤j≤d

{τj + 1

κj

}.

Now, RLCTΩx(f ;ϕφ) = miny{(λy, θy)} which is a positive rational number. This formula is
independent of φ, so we set φ = 1 and the lemma follows.

Abusing notation, we now let RLCTΩx(f ;ϕ) represent the real log canonical threshold
for a sufficiently small neighborhood Ωx of x in Ω. If x is an interior point of Ω, we denote
the threshold at x by RLCTx(f ;ϕ). More generally, we say that Ω is full at x if x lies in the
closure of the interior of Ω. Note that if Ω is not full at x, then the integral (3.3) over small
Ωx is zero so RLCTΩx(f ;ϕ) = (∞,−).

3.2.2 Localization

The global RLCT over a subset Ω is the minimum of local RLCTs at points in Ω.

Proposition 3.9. The set {RLCTΩx(f ;ϕ) : x ∈ Ω} has a minimum and

RLCTΩ(f ;ϕφ) = min
x∈Ω

RLCTΩx(f ;ϕ)

for all positive and smooth functions φ : Ω → R. In fact, it suffices to consider the minimum
over all x in the variety VΩ(f), and the RLCT is (∞,−) if this variety is empty.
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Proof. Lemma 3.8 associates a small neighborhood to each point in the compact set Ω, so
there exists a subcover {Ωx : x ∈ S} where S is finite. Let {σx(ω)} be a partition of unity
subordinate to this subcover. Then,∫

Ω

∣∣f(Ω)
∣∣−z|ϕ(ω)φ(ω)| dω =

∑
x∈S

∫
Ωx

∣∣f(Ω)
∣∣−z|ϕ(ω)φ(ω)|σx(ω) dω.

From this finite sum, we have

RLCTΩ(f ;ϕφ) = min
x∈S

RLCTΩx(f ;ϕφσx) = min
x∈S

RLCTΩx(f ;ϕ).

Now, if y ∈ Ω \ S, let Ωy be a neighborhood of y prescribed by Lemma 3.8 and consider the
cover {Ωx : x ∈ S}∪{Ωy} of Ω. After choosing a partition of unity subordinate to this cover
and repeating the above argument, we get

RLCTΩ(f ;ϕφ) ≤ RLCTΩy(f ;ϕ) for all y ∈ Ω.

Combining the two previously displayed equations proves the proposition. The last statement
follows from the fact that the RLCT is infinite for points x /∈ VΩ(f).

We say that ϕ : Ω → R is nearly analytic if ϕ is a product ϕaϕs of functions where ϕa is
real analytic and ϕs is positive and smooth. Our results up to this point allow us to conclude
that for f , ϕ and Ω satisfying the following analyticity conditions, the zeta function (3.3) is
meromorphic so the real log canonical threshold is well-defined.

Corollary 3.10. Given a compact semianalytic set Ω ⊂ Rd, a function f ∈ AΩ satisfying
f(x) = 0 for some x ∈ Ω, and a nearly analytic function ϕ : Ω → R, the zeta function (3.3)
can be continued analytically to C. It has a Laurent expansion (3.4) whose poles are positive
rational numbers with a smallest element.

Proof. The proofs of Lemma 3.8 and Proposition 3.9 outline a way to compute the Laurent
expansion of the zeta function (3.3).

3.2.3 Comparability of Phase Functions

If the function whose RLCT we are finding is complicated, we may replace it with a simpler
function that bounds it. More precisely, given f, g ∈ AΩ, we say that f and g are comparable
in Ω if c1f ≤ g ≤ c2f in Ω for some c1, c2 > 0. The next two results are due to Watanabe.

Proposition 3.11. Given f, g ∈ AΩ, suppose 0 ≤ cf ≤ g in Ω for some constant c > 0.
Then, RLCTΩ(f ;ϕ) ≤ RLCTΩ(g;ϕ).

Proof. See [58, §7].

Corollary 3.12. If f, g are comparable in Ω, then RLCTΩ(f ;ϕ) = RLCTΩ(g;ϕ).



CHAPTER 3. ASYMPTOTIC THEORY 65

3.2.4 Boundary of Domain of Integration

We now show that the threshold at a boundary point depends on the shape of the boundary.

Example 3.13. Consider the following two small neighborhoods of the origin.

Ω1 = {(x, y) ∈ R2 : 0 ≤ x ≤ y ≤ ε}
Ω2 = {(x, y) ∈ R2 : 0 ≤ y ≤ x ≤ ε}

y

x

Ω1

y

x
Ω2

Figure 3.1: RLCT depends on the boundary inequalities.

To compute the real log canonical threshold of the function xy2 over these sets, we have
the corresponding zeta functions below.

ζ1(z) =

∫ ε

0

∫ y

0

x−zy−2z dx dy =
ε−3z+2

(−z + 1)(−3z + 2)

ζ2(z) =

∫ ε

0

∫ x

0

x−zy−2z dy dx =
ε−3z+2

(−2z + 1)(−3z + 2)

This shows that RLCTΩ1(xy
2) = 2/3 while RLCTΩ2(xy

2) = 1/2.

Note that the RLCT does not depend as much on the analytic inequalities defining the
boundary as it does on the set of points that the inequalities cut out. For instance, the above
two neighborhoods of the origin may also be expressed as follows.

Ω1 = {(x, y) ∈ R2 : 0 ≤ x2 ≤ y2 ≤ ε}
Ω2 = {(x, y) ∈ R2 : 0 ≤ y2 ≤ x2 ≤ ε}

Changing the inequalities may change the resolution of singularities required to desingularize
the phase f and the boundary of Ω, but the RLCT remains unchanged because the domain
of integration for the corresponding zeta function ζ(z) is unchanged.
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3.2.5 Deepest Singularities

Because the real log canonical threshold over a set Ω ⊂ Rd is the minimum of thresholds at
points x ∈ Ω, we want to know where this minimum is achieved. Let us study this problem
topologically. Consider a locally finite collection S of pairwise disjoint submanifolds S ⊂ Ω
such that Ω = ∪S∈SS and each S is locally closed, i.e. the intersection of an open and a
closed subset. Let S be the closure of S. We say S is a stratification of Ω if S∩T 6= ∅ implies
S ⊂ T for all S, T ∈ S. A stratification S of Ω is a refinement of another stratification T if
S ∩ T 6= ∅ implies S ⊂ T for all S ∈ S and T ∈ T .

Let the amplitude ϕ : Ω → R be nearly analytic. Define Sλ,1, . . . , Sλ,r to be the connected
components of the set {x ∈ Ω : RLCTΩx(f ;ϕ) = λ} and let S be the collection {Sλ,i}. Now,
define the order ordxf of f at a point x ∈ Ω to be the smallest degree of a monomial appearing
in a series expansion of f at x. This number is independent of the choice of local coordinates
ω1, . . . , ωd because it is the largest k such that f ∈ mk

x where mx = {g ∈ Ax : g(x) = 0}
is the vanishing ideal of x. Define Tl,1, . . . , Tl,s to be the connected components of the
set {x ∈ Ω : ordxf = l} and let T be the collection {Tl,j}. We conjecture the following
relationship between S and T . It implies that the minimum real log canonical threshold
over a set must occur at a point of highest order. An example of this stratification may be
found in Proposition 4.25.

Conjecture 3.14. The collections S and T are stratifications of Ω. Furthermore, if the
amplitude ϕ is a positive smooth function, then S refines T .

3.3 Laplace and Mellin Transforms

Laplace integrals such as (3.1) occur frequently in physics, statistics and other applications.
At first, the relationship between their asymptotic expansions and the Laurent expansion of
the zeta function (3.3) seems strange. The key is to write these integrals as

Z(n) =

∫
Ω

e−n|f(ω)||ϕ(ω)| dω =

∫ ∞

0

e−ntv(t) dt

ζ(z) =

∫
Ω

∣∣f(ω)
∣∣−z|ϕ(ω)| dω =

∫ ∞

0

t−zv(t) dt

where v(t) is the state density function [57] or Gelfand-Leray function [3]

v(t) =
d

dt

∫
0<|f(ω)|<t

|ϕ(ω)| dω.

Formally, Z(n) is the Laplace transform of v(t) while ζ(z) is its Mellin transform. Note that
contrary to its name, v(t) is generally not a function but a Schwartz distribution. Next, we
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study the series expansions

Z(n) ≈
∑

α

d∑
i=1

cα,in
−a(log n)i−1 (3.5)

v(t)dt ≈
∑

α

d∑
i=1

bα,i t
α(log t)i−1dt (3.6)

ζ(z) ∼
∑

α

d∑
i=1

dα,i(z − α)−i (3.7)

where the series (3.5) and (3.6) are asymptotic expansions while (3.7) is the principal part of
the Laurent series expansion. Formulas relating their coefficients are then deduced from the
Laplace and Mellin transforms of tα(log t)i. Detailed expositions on this subject have been
written by Arnol’d–Gusĕın-Zade–Varchenko [3, §6-7], Watanabe [57, §4] and Greenblatt [26].

Proposition 3.15. The asymptotic expansion of the Laplace transform of tα−1(log t)i is∫ ∞

0

e−nt tα−1(log t)i dt ≈
i∑

j=0

(
i

j

)
(−1)jΓ(i−j)(α)n−α(log n)j

while the Mellin transform of tα−1(log t)i is∫ 1

0

t−z tα−1(log t)i dt = − i! (z − α)−(i+1).

Proof. See [3, Thm 7.4] and [57, Ex 4.7] respectively.

3.4 Asymptotic Expansion

In this section, we employ standard techniques to derive the asymptotic expansion of the
Laplace integral (3.1) from the Laurent expansion of the zeta function (3.3). Recall that Γ
is the Gamma function and that Γ(i) is its i-th derivative.

Theorem 3.16. Let Ω ⊂ Rd be a compact semianalytic subset and ϕ : Ω → R be nearly
analytic. If f ∈ AΩ with f(x) = 0 for some x ∈ Ω, then the Laplace integral

Z(n) =

∫
Ω

e−n|f(ω)||ϕ(ω)| dω

has the asymptotic expansion

∑
α

d∑
i=1

cα,i n
−α(log n)i−1. (3.8)
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The α in this expansion range over positive rational numbers which are poles of

ζ(z) =

∫
Ωδ

∣∣f(ω)
∣∣−z|ϕ(ω)| dω (3.9)

where δ ∈ R is any δ > 0 and Ωδ = {ω ∈ Ω : |f(ω)| < δ}. The coefficients cα,i satisfy

cα,i =
(−1)i

(i− 1)!

d∑
j=i

Γ(j−i)(α)

(j − i)!
dα,j (3.10)

where dα,j is the coefficient of (z − α)−j in the Laurent expansion of ζ(z).

Proof. First, set δ = 1. We split the integral Z(n) into two parts:

Z(n) =

∫
|f(ω)|<1

e−n|f(ω)||ϕ(ω)| dω +

∫
|f(ω)|≥1

e−n|f(ω)||ϕ(ω)| dω.

The second integral is bounded above by Ce−n for some positive constant C, so asymptoti-
cally it goes to zero more quickly than any n−α. For the first integral, we write ζ(z) as the
Mellin transform of the state density function v(t).

ζ(z) =

∫
|f(ω)|<1

∣∣f(ω)
∣∣−z|ϕ(ω)| dω =

∫ 1

0

t−zv(t) dt.

By Corollary 3.10, ζ(z) has a Laurent expansion (3.4). Moreover, since |f(ω)| < 1, ζ(n) → 0
as n → −∞ so the polynomial part P (z) is identically zero. Applying the inverse Mellin
transform to ζ(z), we get a series expansion (3.6) of the state density function v(t). Applying
the Laplace transform to v(t) in turn gives the asymptotic expansion (3.5) of Z(n). Therefore,
from Proposition 3.15, we get the relations

cα,i = (−1)i−1

d∑
j=i

(
j − 1

i− 1

)
Γ(j−i)(α) bα−1,j, dα,j = −(j − 1)! bα−1,j.

Equation (3.10) follows immediately. Finally, for all other values of δ, we write∫
Ω

∣∣f(ω)
∣∣−z|ϕ(ω)|dω =

∫
Ωδ

∣∣f(ω)
∣∣−z|ϕ(ω)|dω +

∫
|f(ω)|≥δ

∣∣f(ω)
∣∣−z|ϕ(ω)|dω.

The last integral does not have any poles, so the principal parts of the Laurent expansions
of the first two integrals are the same for all δ.

In this chapter, we studied the asymptotic theory of Laplace integrals over semianalytic
subsets. Among our main contributions are Lemma 3.8 and Proposition 3.9 which describe
local properties of the RLCT, and Theorem 3.16 which gives an explicit formula for the
asymptotic expansion of the Laplace integral. These results will be important for proofs in
Chapter 4. We also discussed delicate issues such as the behavior of the RLCT at boundary
points and the location of deepest singularities. In Chapter 5, we exploit Theorem 3.16 and
develop algorithms which allows us to compute the asymptotics in Example 1.18.
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Chapter 4

Real Log Canonical Thresholds

In Chapter 3, we defined real log canonical thresholds (RLCTs) for functions, and studied
their connection to asymptotic expansions of Laplace integrals. In this chapter, we investigate
RLCTs for ideals, and show that the informal definition given in Section 1.5.2 is independent
of the choice of generators. Computing RLCTs of ideals is important for many statistical
applications, as was described in Section 1.5 where we studied fiber ideals of models.

In Section 4.1, we investigate their fundamental properties which provides us with sym-
bolic tools for computing the RLCT more efficiently. In nondegenerate cases, we can calculate
the RLCT using a combinatorial geometric method involving Newton polyhedra which origi-
nates from toric geometry. The method has been applied to RLCTs of functions [3, §8]. Our
contribution in Section 4.2 is to extend it to RLCTs of ideals and to give a formula for the
RLCT of a monomial ideal with respect to a monomial amplitude. We finish with a difficult
statistical example in Section 4.3 which employs the tools discussed in this chapter. In our
applications, we will only study RLCTs of polynomial ideals, but the proofs in this chapter
extend easily to analytic functions so we will state them in their full generality. Some of our
results have been publish in a preprint [37].

In this section, let Ω ⊂ Rd be a compact semianalytic subset and let ϕ : Ω → R be nearly
analytic. Before we give a definition for the RLCT of an ideal, let us define the RLCT for a
finite set of functions {f1, . . . , fr} ⊂ AΩ. Later, this set of functions will represent a choice
of generators for the ideal, and we will show that the RLCT is independent of this choice.
Indeed, let RLCTΩ(f1, . . . , fr;ϕ) be the smallest pole and multiplicity of the zeta function

ζ(z) =

∫
Ω

(
f1(ω)2 + · · ·+ fr(ω)2

)−z/2

|ϕ(ω)| dω. (4.1)

Recall that these pairs are ordered by the rule (λ1, θ1) > (λ2, θ2) if λ1 > λ2, or λ1 = λ2 and
θ1 < θ2. For x ∈ Ω, we define RLCTΩx(f1, . . . , fr;ϕ) to be the threshold for a sufficiently
small neighborhood Ωx of x in Ω.
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Remark 4.1. The (complex) log canonical threshold may be defined in a similar fashion.
It is the smallest pole of the zeta function

ζ(z) =

∫
Ω

(
|f1(ω)|2 + · · ·+ |fr(ω)|2

)−z

dω.

Observe that the f 2
i have been replaced by |fi|2 and the exponent −z/2 is changed to −z.

Crudely, this factor of 2 comes from the fact that Cd is a real vector space of dimension 2d.
The complex threshold is often different from the RLCT [47]. In algebraic geometry, more
is known about complex log canonical thresholds than about real log canonical thresholds.
Many results in this chapter were motivated by their complex analogs [8, 31,33,36].

4.1 Fundamental Formulas

4.1.1 Equivalent definitions

We give several equivalent definitions of RLCTΩ(f1, . . . , fr;ϕ) which are helpful in proving
its fundamental properties.

Proposition 4.2. Given real analytic functions f1, . . . , fr ∈ AΩ, the pairs (λ, θ) defined in
the statements below are all equal.

a. The logarithmic Laplace integral

logZ(n) = log

∫
Ω

exp
(
−n

r∑
i=1

fi(ω)2
)
|ϕ(ω)| dω

is asymptotically −λ
2

log n+ (θ − 1) log log n+O(1).

b. The zeta function

ζ(z) =

∫
Ω

( r∑
i=1

fi(ω)2
)−z/2

|ϕ(ω)| dω

has a smallest pole λ of multiplicity θ.

c. The pair (λ, θ) is the minimum

min
x∈Ω

RLCTΩx(f1, . . . , fr;ϕ).

In fact, it is enough to vary x over VΩ(〈f1, . . . , fr〉).

Proof. Item (b) is the original definition of the RLCT. The equivalence of (a) and (b) follows
from Theorem 3.16, and that of (b) and (c) from Proposition 3.9. Some of the statements
in this proposition are also proved in [57, Thm 7.1].
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4.1.2 Choice of Generators

RLCTΩ(f 2
1 + · · ·+f 2

r ;ϕ) = (λ, θ) implies RLCTΩ(f1, . . . , fr;ϕ) = (2λ, θ). From this, it seems
that we should restrict ourselves to RLCTs of single and of not multiple functions. However,
as the next proposition shows, multiple functions are important because they allow us to
work with ideals for which different generating sets can be chosen. This gives us freedom to
switch between single and multiple functions in powerful ways. For instance, special cases
of this proposition such as Lemmas 3 and 4 of [2] have been used to simplify computations.

Proposition 4.3. If two sets {f1, . . . , fr} and {g1, . . . , gs} of functions generate the same
ideal I ⊂ AΩ, then

RLCTΩ(f1, . . . , fr;ϕ) = RLCTΩ(g1, . . . , gs;ϕ).

Define this pair (λ, θ) to be RLCTΩ(I;ϕ). Here, λ is a positive rational number.

Proof. Each gj can be written as a combination h1f1 + · · ·+ hrfr of the fi where the hi are
real analytic over Ω. By the Cauchy-Schwarz inequality,

g2
j ≤

(
h2

1 + · · ·+ h2
r)
(
f 2

1 + · · ·+ f 2
r

)
.

Because Ω is compact, the hi are bounded. Thus, summing over all the gj, there is some
constant c > 0 such that,

s∑
j=1

g2
j ≤ c

r∑
i=1

f 2
i .

By Proposition 3.11, RLCTΩ(g1, . . . , gr;ϕ) ≤ RLCTΩ(f1, . . . , fr;ϕ) and by symmetry, the
reverse is also true, so we have equality. The fact that the real log canonical threshold is a
positive rational number follows from Corollary 3.10.

Above, we defined the RLCT of an ideal 〈f1, . . . , fr〉 in terms of the RLCT of a particular
function K(f1, . . . , fr) = f 2

1 + . . . + f 2
r . We now show that any function K can be used as

long as K(0) = 0,∇K(0) = 0 and ∇2K(0) � 0, i.e. the Hessian is positive definite.

Proposition 4.4. Let U ⊂ Rd, and let the maps f : Ω → U and K : U → R be real analytic
at ω̂ ∈ Ω and f̂ = f(ω̂) ∈ U respectively. Suppose K(f̂) = 0,∇K(f̂) = 0 and ∇2K(f̂) � 0.
Then, for all ϕ(ω) nearly analytic at ω̂,

RLCTΩω̂
(K ◦ f(ω);ϕ) = (λ, θ)

where (2λ, θ) = RLCTΩω̂
(〈f(ω)− f̂〉;ϕ).
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Proof. Without loss of generality, we assume that f̂ is the origin. Because ∇2K(f̂) is positive
definite, there exists a linear change of coordinates T : Rd → Rd such that the power series
expansion of K is u2

1 + · · ·+u2
d +O(u3) where (u1, . . . , ud) = T (f1, . . . , fd). This implies that

there is a sufficiently small neighborhood Ũ ⊂ U of the origin such that

c(u2
1 + · · ·+ u2

d) ≤ K ◦ T−1(u) ≤ C(u2
1 + · · ·+ u2

d), ∀u ∈ Ũ

for some positive constants c and C. Linear algebra tells us that

λd(f 2
1 + · · ·+ f 2

d ) ≤ u2
1 + · · ·+ u2

d ≤ λ1(f
2
1 + · · ·+ f 2

d ), ∀ f ∈ T−1Ũ

where λ1 is the largest eigenvalue of TTT and λd the smallest. Hence,

cλd(f 2
1 + · · ·+ f 2

d ) ≤ K(f) ≤ Cλ1(f
2
1 + · · ·+ f 2

d ), ∀ f ∈ T−1Ũ .

Now, since f : Ω → U is continuous at ω̂, there exists some neighborhood Ω̃ ⊂ Ω of ω̂ such
that f(Ω̃) ⊂ T−1Ũ . Thus,

cλd(f1(ω)2 + · · ·+ fd(ω)2) ≤ K ◦ f(ω) ≤ Cλ1(f1(ω)2 + · · ·+ fd(ω)2), ∀ω ∈ Ω̃

and so by Proposition 3.11,

RLCTΩω̂
(K ◦ f(ω);ϕ) = RLCTΩω̂

(f1(ω)2 + · · ·+ fd(ω)2;ϕ) = (λ, θ).

Finally, by definition, (2λ, θ) = RLCTΩω̂
(〈f1(ω), . . . , fd(ω)〉;ϕ).

4.1.3 Sum, Product and Chain Rules

For the next result, let f1, . . . , fr ∈ AX and g1, . . . , gs ∈ AY where X ⊂ Rm and Y ⊂ Rn are
compact semianalytic subsets. This occurs, for instance, when the fi and gj are polynomials
with disjoint sets of indeterminates {x1, . . . , xm} and {y1, . . . , yn}. Let ϕx : X → R and
ϕy : Y → R be nearly analytic. We define (λx, θx) = RLCTX(f1, . . . , fr;ϕx) and (λy, θy) =
RLCTY (g1, . . . , gs;ϕy).

By composing with projections X×Y → X and X×Y → Y , we may regard the fi and
gj as functions analytic over X×Y . Let Ix and Iy be ideals in AX×Y generated by the fi

and gj respectively. Recall that the sum Ix + Iy is generated by all the fi and gj while the
product IxIy is generated by figj for all i, j.

Proposition 4.5 (Sum and Product Rules). The RLCTs for the sum and product of ideals
Ix and Iy with disjoint indeterminates are

RLCTX×Y (Ix + Iy;ϕxϕy) = (λx + λy, θx + θy − 1),

RLCTX×Y (IxIy;ϕxϕy) =


(λx, θx) if λx < λy,
(λy, θy) if λx > λy,
(λx, θx + θy) if λx = λy.
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Proof. Define f(x) = f 2
1 + · · ·+ f 2

r and g(y) = g2
1 + · · ·+ g2

s , and let Zx(n) and Zy(n) be the
corresponding Laplace integrals. By Proposition 4.2,

logZx(n) = −1
2
λx log n+ (θx − 1) log log n+O(1)

logZy(n) = −1
2
λy log n+ (θy − 1) log log n+O(1)

asymptotically. If (λ, θ) = RLCTX×Y (Ix + Iy;ϕxϕy), then

−1
2
λ log n+ (θ − 1) log log n+O(1)

= log
∫

X×Y
e−nf(x)−ng(y)|ϕx||ϕy| dx dy

= log
( ∫

X
e−nf(x)|ϕx| dx

)( ∫
Y
e−ng(y)|ϕy| dy

)
= logZx(n) + logZy(n)

= −1
2
(λx + λy) log n+ (θx + θy − 2) log log n+O(1)

and the first result follows. For the second result, note that

f(x)g(y) = f 2
1 g

2
1 + f 2

1 g
2
2 + · · ·+ f 2

r g
2
s .

Let ζx(z) and ζy(z) be the zeta functions corresponding to f(x) and g(y). By Proposition 4.2,
(λx, θx) and (λy, θy) are the smallest poles of ζx(z) and ζy(z) while RLCTX×Y (IxIy;ϕxϕy) is
the smallest pole of

ζ(z) =
∫

X×Y

(
f(x)g(y)

)−z/2|ϕx||ϕy| dx dy
=

( ∫
X
f(x)−z/2|ϕx| dx

)( ∫
Y
g(y)−z/2|ϕy| dy

)
= ζx(z)ζy(z).

The second result then follows from the relationship between the poles.

Our last property tells us the behavior of RLCTs under a change of variables. Consider
an ideal I ⊂ AW where W is a neighborhood of the origin. Let M be a real analytic manifold
and ρ : M → W a proper real analytic map. Then, the pullback ρ∗I = {f ◦ ρ : f ∈ I} is
an ideal of real analytic functions on M . If ρ is an isomorphism between M \ V(ρ∗I) and
W \V(I), we say that ρ is a change of variables away from V(I). Let |ρ′| denote the absolute
value of the Jacobian determinant of ρ. We call (ρ∗I; (ϕ ◦ ρ)|ρ′|) the pullback pair.

Proposition 4.6 (Chain Rule). Let W be a neighborhood of the origin and I ⊂ AW a finitely
generated ideal. If M is a real analytic manifold, ρ : M → W is a change of variables away
from V(I) and M = ρ−1(Ω ∩W ), then

RLCTΩ0(I;ϕ) = min
x∈ρ−1(0)

RLCTMx(ρ∗I; (ϕ ◦ ρ)|ρ′|).
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Proof. Let f1, . . . , fr generate I and define f = f 2
1 + · · · + f 2

r . Then, RLCTΩ0(I;ϕ) is the
smallest pole and multiplicity of the zeta function

ζ(z) =

∫
Ω0

f(ω)−z/2|ϕ(ω)| dω

where Ω0 ⊂ W is a sufficiently small neighborhood of the origin in Ω. Applying the change
of variables ρ, we have

ζ(z) =

∫
ρ−1(Ω0)

f ◦ ρ(µ)−z/2|ϕ ◦ ρ(µ)||ρ′(µ)| dµ.

The proof of Lemma 3.8 shows that if Ω0 is sufficiently small, there are finitely many points
y ∈ ρ−1(0) and a cover {My} of M = ρ−1(Ω0) such that

ζ(z) =
∑

y

∫
My

f ◦ ρ(µ)−z/2|ϕ ◦ ρ(µ)||ρ′(µ)|σy(µ) dµ

where {σy} is a partition of unity subordinate to {My}. Furthermore, the fi ◦ ρ generate
the pullback ρ∗I and f ◦ ρ = (f1 ◦ ρ)2 + · · ·+ (fr ◦ ρ)2. Therefore,

RLCTMy(f ◦ ρ; (ϕ ◦ ρ)|ρ′|σy) = RLCTMy(ρ∗I; (ϕ ◦ ρ)|ρ′|)

and the result follows from the two previously displayed equations.

4.2 Newton Polyhedra

Newton polyhedra methods are useful for computing the RLCT of a function f at a point x
which is in the interior of the parameter space Ω. By applying a translation, we may assume
without loss of generality that x is the origin 0 ∈ Rd and that f is analytic at this origin.

4.2.1 Nondegeneracy

Given an analytic function f ∈ A0(Rd), we pick local coordinates {w1, . . . , wd} in a neigh-
borhood of the origin. This allows us to represent f as a convergent power series

∑
α cαω

α

where ω = (ω1, . . . , ωd) and each α = (α1, . . . , αd) ∈ Nd. Let [ωα]f denote the coefficient cα
of ωα in this expansion. Define its Newton polyhedron P(f) ⊂ Rd to be the convex hull

P(f) = conv {α + α′ : [ωα]f 6= 0, α′ ∈ Rd
≥0}.

A subset γ ⊂ P(f) is a face if there exists β ∈ Rd such that

γ = {α ∈ P(f) : 〈α, β〉 ≤ 〈α′, β〉 for all α′ ∈ P(f)}.
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where 〈 , 〉 is the standard dot product. Dually, the normal cone at γ is the set of all vectors
β ∈ Rd satisfying the above condition. Each β lies in the non-negative orthant Rd

≥0 because
otherwise, the linear function 〈 · , β〉 does not have a minimum over the unbounded set P(f).
As a result, the union of all the normal cones gives a partition F(f) of the non-negative
orthant called the normal fan. Given a compact subset γ ⊂ Rd, define the face polynomial

fγ =
∑
α∈γ

cαω
α.

Recall that fγ is singular at a point x ∈ Rd if ordxf ≥ 2, i.e.

fγ(x) =
∂fγ

∂ω1

(x) = · · · =
∂fγ

∂ωd

(x) = 0.

We say that f is nondegenerate if fγ is non-singular at all points in the torus (R∗)d for all
compact faces γ of P(f), otherwise we say f is degenerate. Now, we define the distance l of
P(f) to be the smallest t ≥ 0 such that (t, t, . . . , t) ∈ P(f). The multiplicity θ of l is the
codimension of the face of P(f) at this intersection of the diagonal with P(f). However, if
l = 0, we leave θ undefined. These notions of nondegeneracy, distance and multiplicity were
first coined and studied by Varchenko [54].

We now extend the above notions to ideals. For any ideal I ⊂ A0, define

P(I) = conv {α ∈ Rd : [ωα]f 6= 0 for some f ∈ I}.

Related to this geometric construction is the monomial ideal

mon(I) = 〈ωβ :
∑

α cαω
α ∈ I, cβ 6= 0〉.

Note that I and mon(I) have the same Newton polyhedron, and if I is generated by f1, . . . , fr,
then mon(I) is generated by the monomials ωα appearing in the fi. One consequence is that
P(f 2

1 + · · · + f 2
r ) is the scaled polyhedron 2P(I). More importantly, the threshold of I is

bounded above by that of mon(I). To prove this result, we need the following lemma. Recall
that by the Hilbert Basis Theorem or by Dickson’s Lemma [17], mon(I) is finitely generated.

Lemma 4.7. Given f ∈ A0(Rd), let S be a finite set of exponents α of monomials ωα which
generate mon(〈f〉). Then, there is a positive constant c such that

|f(ω)| ≤ c
∑
α∈S

|ω|α

in a sufficiently small neighborhood of the origin.

Proof. Let
∑

α cαω
α be the power series expansion of f . Because f is analytic at the origin,

there exists ε > 0 such that ∑
α

|cα| εα1+···+αd <∞.
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Now, let S = {α(1), α(2), . . . , α(s)}. Since the monomials ωα(i)
generate mon(I), we can write

f(ω) = ωα(1)

g1(ω) + · · ·+ ωα(s)

gs(ω)

for some power series gi(ω). Each gi(ω) is absolutely convergent in the ε-neighborhood of the
origin because f is absolutely convergent in that neighborhood. Thus, the gi(ω) are analytic.
Their absolute values are bounded above by some constant c in a small neighborhood of the
origin, and the lemma follows.

Proposition 4.8. Let I ⊂ A0 be a finitely generated ideal and ϕ : Rd → R be nearly analytic
at the origin. Then,

RLCT0(I;ϕ) ≤ RLCT0(mon(I);ϕ).

Proof. Suppose f ∈ A0(Rd) and S is a finite set of generating exponents α for mon(〈f〉). By
Lemma 4.7 and the Cauchy-Schwarz inequality, there exist constants c, c′ > 0 such that

f 2 ≤
(
c
∑
α∈S

|ω|α
)2

≤ c′
∑
α∈S

ω2α

in a sufficiently small neighborhood of the origin. More generally, if f1, . . . , fr generate I,
then f 2

1 + . . . + f 2
r is bounded by a constant multiple of the sum of squares of monomials

generating mon(I). The result now follows from Propostion 3.11.

Given a compact subset γ ⊂ Rd, define the face ideal

Iγ = 〈 fγ : f ∈ I 〉.

The next result shows that we can compute Iγ directly from generators f1, . . . , fr for I.

Proposition 4.9. If I = 〈f1, . . . , fr〉, then Iγ = 〈f1γ, . . . , frγ〉 for all compact faces γ ∈ P(I).

Proof. By definition, 〈f1γ, . . . , frγ〉 ⊂ Iγ. For the other inclusion, it is enough to show that
fγ ∈ 〈f1γ, . . . , frγ〉 for all f ∈ I. First, we claim that if ωα = ωα′ωα′′ with α ∈ γ and ωα′ ∈
mon(I), then ωα′′ = 1. Indeed, for all β ∈ Rd

≥0 normal to γ, we have 〈α, β〉 = 〈α′, β〉+〈α′′, β〉,
but 〈α, β〉 ≤ 〈α′, β〉 so 〈α′′, β〉 = 0. This implies that α′ + kα′′ ∈ γ for all integers k > 0.
Since γ is compact, α′′ must be the zero vector so ωα′′ = 1.

Now, if f ∈ I, then f = h1f1 + · · ·+ hrfr for some analytic functions h1, . . . , hr. Clearly,
fγ = (h1f1)γ + · · ·+ (hrfr)γ. By the above claim, (hifi)γ = hi0fiγ where hi0 is the constant
term in hi. Hence, fγ = h10f1γ + · · ·+ hr0frγ ∈ 〈f1γ, . . . , frγ〉 as required.

Remark 4.10. We now explain why we do not run into Gröbner-basis issues in this propo-
sition. Let β be a vector in the normal cone at the face γ of P(I). Now, consider the weight
order associated to β, and let inβf be the sum of all the terms of f that are maximal with
respect to this order [17, §15]. Let inβI be the initial ideal

inβI = 〈 inβf : f ∈ I 〉.
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Then, by definition, a set of functions f1, . . . , fr ∈ I is a Gröbner basis for I if and only if
the initial ideal inβI is generated by the inβfi. Not all generating sets are Gröbner bases.
But in our case, the face ideal Iγ is not the initial ideal inβI. In fact, the face polynomial fγ

is not the initial form inβf . For instance, suppose I = 〈x, y〉, β = (1, 1) ∈ R2, and γ is the
face of P(I) normal to β. If f = x2 + y2 ∈ I, then inβf = x2 + y2 but fγ = 0.

Lastly, we give several equivalent definitions of sos-nondegeneracy for ideals I, where sos
stands for sum-of-squares.

Proposition 4.11. Let I ⊂ A0 be an ideal. The following statements are equivalent:

1. For some generating set {f1, . . . , fr} for I, f 2
1 + · · ·+ f 2

r is nondegenerate.

2. For all generating sets {f1, . . . , fr} for I, f 2
1 + · · ·+ f 2

r is nondegenerate.

3. For all compact faces γ ⊂ P(I), the variety V(Iγ) does not intersect the torus (R∗)d.

If the ideal I satisfies any of these conditions, then we say that I is sos-nondegenerate.

Proof. Let f1, . . . , fr generate I and let f = f 2
1 + · · · + f 2

r . If γ is a compact face of P(I),
then (2γ) is a compact face of P(f) = 2P(I). Furthermore, f(2γ) = f 2

1γ + · · ·+ f 2
rγ and

∂f(2γ)

∂ωi

= 2f1γ
∂f1γ

∂ωi

+ · · ·+ 2frγ
∂frγ

∂ωi

.

Now, f 2
1γ + · · ·+f 2

rγ = 0 if and only if f1γ = · · · = frγ = 0. It follows that f is nondegenerate
if and only if V(〈f1γ, . . . , frγ〉) ∩ (R∗)d = V(Iγ) ∩ (R∗)d = ∅ for all compact faces γ ⊂ P(I).
This proves the equivalences (1) ⇔ (3) and (2) ⇔ (3).

A Singular library which implements some of the algorithms discussed in this section is
made available at the following website:

http://math.berkeley.edu/∼shaowei/rlct.html

The library provides functions for determining the nondegeneracy of functions and of ideals,
and computes the RLCT of monomial ideals.

Remark 4.12. After finishing this chapter, the author discovered another notion of nonde-
generacy for ideals of complex formal power series due to Saia [46]. An ideal I is said to be
Newton nondegenerate if there exists a generating set {f1, . . . , fr} of I such that for every
compact face γ of P(I), the ideal of Aγ generated by f1γ, . . . , frγ has finite colength in Aγ.
Here, Aγ is the ring A0/Jγ where Jγ is the monomial ideal generated by all monomials ωα

such that α is not in the cone over γ. As mentioned by Bivià-Ausina [7, §2], this notion
of nondegeneracy is equivalent to saying that for this generating set and for every compact
face γ, the common complex zeros of f1γ, . . . , frγ is contained in the coordinate hyperplanes
{ω ∈ Rn : ω1 · · ·ωd = 0}. In fact, if I is Newton nondegenerate, then this condition is true
for all generating sets of I. Thus, their notion of Newton nondegeneracy is in some sense
the complex version of our notion of sos-nondegeneracy.
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4.2.2 Toric Resolutions

We recall some basic facts about toric varieties. We say a polyhedral cone σ is generated
by vectors v1, . . . , vk ∈ Rd if σ = {

∑
i λivi : λi ≥ 0}. If σ is generated by lattice vectors

vi ∈ Zd, then σ is rational. If the origin is a face of σ, then σ is pointed. A ray is a pointed
one-dimensional cone. Every rational ray has a lattice generator of minimal length called
the minimal generator. Similarly, every pointed rational polyhedral cone σ is generated by
the minimal generators of its edges. If these minimal generators are linearly independent
over R, then σ is simplicial. A simplicial cone is smooth if its minimal generators also form
part of a Z-basis of Zd. A collection F of pointed rational polyhedral cones in Rd is a fan if
the faces of every cone in F are in F and the intersection of any two cones in F are again
in F . The support of F is the union of its cones as subsets of Rd. If the support of F is
the non-negative orthant, then F is locally complete. If every cone of F is simplicial (resp.
smooth), then F is simplicial (resp. smooth). A fan F1 is a refinement of another fan F2 if
the cones of F1 come from partitioning the cones of F2. See [21,52] for more details.

Given a smooth locally complete fan F , we have a smooth toric variety P(F) covered by
open affines Uσ ' Rd, one for each maximal cone σ of F . Furthermore, we have a blowup
map ρF : P(F) → Rd defined as follows: for each maximal cone σ of F minimally generated
by v1, . . . , vd with vi = (vi1, . . . , vid), we have a monomial map ρσ : Uσ → Rd,

(µ1, . . . , µd) 7→ (ω1, . . . , ωd).

ω1 = µv11
1 µv21

2 · · ·µvd1
d

ω2 = µv12
1 µv22

2 · · ·µvd2
d

...

ωd = µv1d
1 µv2d

2 · · ·µvdd
d

Let v = vσ be the matrix (vij) where each vector vi forms a row of v. We represent the above
monomial map by ω = µv. If vi+ represents the i-th row sum of v, the Jacobian determinant
of this map is given by

(det v)µ
v1+−1
1 · · ·µvd+−1

d .

We are now ready to connect these concepts. The next two theorems are from Varchenko,
see [54] and [3, §8.3]. His notion of degeneracy is weaker than ours because it does not include
the condition fγ = 0, but his proof [3, Lemma 8.9] actually supports the stronger notion.
The set up is as follows: suppose f is analytic in a neighborhood W of the origin. Let F be
any smooth refinement of the normal fan F(f) and ρF be the blowup associated to F . Set
M = ρ−1

F (W ). Let l be the distance of P(f) and θ its multiplicity.

Theorem 4.13. If f is nondegenerate, then (M,W, ρF) desingularizes f at 0.

Theorem 4.14. Suppose (M,W, ρF) desingularizes f at 0. If f has a maximum or minimum
at 0, then RLCT0 f = (1/l, θ).
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We extend Theorem 4.14 to compute RLCT0(f ;ωτ ) for monomials ωτ . Given a polyhe-
dron P(f) ⊂ Rd and a vector τ = (τ1, . . . , τd) of non-negative integers, let the τ -distance lτ
be the smallest t ≥ 0 such that t(τ1 + 1, . . . , τd + 1) ∈ P(f) and let the multiplicity θτ be the
codimension of the face at this intersection.

Theorem 4.15. Suppose (M,W, ρF) desingularizes f at 0. If f has a maximum or minimum
at 0, then RLCT0(f ;ωτ ) = (1/lτ , θτ ).

Proof. We follow roughly the proof in [3, §8] of Theorem 4.14. Let σ be a maximal cone of
F . Because F refines F(f), σ is a subset of some maximal cone σ′ of F(f). Let α ∈ Rd be
the vertex of P(f) dual to σ′. Let v be the matrix whose rows are minimal generators of σ
and ρ the monomial map µ 7→ µv. Then,

f(ω)−z|ωτ | dω = f(ρ(µ))−z|ρ(µ)τ ||ρ′(µ)| dµ
= g(µ)−z|(det v)µ−vαzµvτµ

v1+−1
1 · · ·µvd+−1

d |dµ

for some function g(µ). Because f has a maximum or minimum at 0, this ensures g(µ) 6= 0
on the affine chart Uσ. Thus, for the cone σ,

(λσ, θσ) = (minS,#minS), S =
{〈vi, τ + 1〉

〈vi, α〉
: 1 ≤ i ≤ d

}
where τ+1 = (τ1+1, . . . , τd+1). We now give an interpretation for the elements of S. Fixing
i, let P be the affine hyperplane normal to vi passing through α. Then, 〈vi, α〉/〈vi, τ + 1〉 is
the distance of P from the origin along the ray {t(τ + 1) : t ≥ 0}. Since RLCT0(f ;ωτ ) =
minσ(λσ, θσ), the result follows.

Remark 4.16. After finishing this chapter, the author discovered that a result similar to
the previous theorem was proved by Vasil’ev [55] for complex analytic functions.

4.2.3 Monomial Ideals

Monomial ideals play in special role in the theory of real log canonical thresholds of ideals,
just as monomial functions are important in the theory of RLCTs of functions. The statement
and proof of this next result is due to Piotr Zwiernik.

Proposition 4.17. Monomial ideals are sos-nondegenerate.

Proof. Let f = f 2
1 + · · · + f 2

r where f1, . . . , fr are monomials generating I. For each face γ
of P(I), fγ is also a sum of squares of monomials, so fγ does not have any zeros in (R∗)d

and the result now follows from Proposition 4.11(3).

We now come to the main theorem of this chapter. As a special case, we have a formula
for the RLCT of a monomial ideal with respect to a monomial amplitude function. The
analogous formula for complex log canonical thresholds of monomial ideals was discovered
and proved by Howald [31].
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Theorem 4.18. If I ⊂ A0 is a finitely generated ideal, then

RLCT0(I;ωτ ) ≤ (1/lτ , θτ )

where lτ is the τ -distance of P(I) and θτ its multiplicity. Equality occurs when I is monomial
or, more generally, sos-nondegenerate.

Proof. If I is sos-nondegenerate, the equality follows from Theorem 4.15. For all other ideals,
the inequality follows from Proposition 4.8 and Corollary 4.17.

Remark 4.19. Define the principal part fP of f to be
∑

α cαω
α where the sum is over all α

lying in some compact face of P(f). The above theorems imply that if f is nondegenerate,
then RLCT0 f = RLCT0 fP . However, this equality is not true in general. For instance, if
f = (x+ y)2 + y4, then fP = (x+ y)2 but RLCT0 f = (3/4, 1) and RLCT0 fP = (1/2, 1).

Our first corollary shows that the asymptotic correctness of the BIC is a special case of
Watanabe’s Theorem 1.3. Recall that for regular models where the true distribution is given
by the parameter ω = 0, the Kullback-Leibler function K(ω) satisfies K(0) = 0, ∇K(0) = 0
and ∇2K(0) � 0. For these models, the BIC states that the learning coefficient (λ, θ) equals
(d/2, 1), while Watanabe’s Theorem states that (λ, θ) equals RLCT0K.

Corollary 4.20. If K ∈ A0(Rd) is such that K(0) = 0, ∇K(0) = 0 and ∇2K(0) � 0, then
RLCT0K = (d/2, 1).

Proof. Because its Hessian is full rank, there is a linear change of variables such that K =
ω2

1 + · · · + ω2
d + O(ω3). Hence, K is nondegenerate and the Newton polyhedron P(K) has

distance l = 2/d with θ = 1.

Corollary 4.21. Let I be generated by f1, . . . , fs and suppose the Jacobian matrix (∂fi/∂ωj)
has rank r at 0. Then, RLCT0 I ≤ (1

2
(r + d), 1).

Proof. Because the rank of (∂fi/∂ωj) is r, there is a linear change of variables such that the
only linear monomials appearing in I are ω1, . . . , ωr. It follows that P(I) lies in the halfspace
α1 + · · ·+αr + 1

2
(αr+1 + · · ·+αd) ≥ 1 and its distance is at least 1/(r+ d−r

2
) = 2/(r+d).

We saw in Propositions 4.11 and 4.17 that if f1, . . . , fr generate a monomial ideal, then the
sum of squares f 2

1 +· · ·+f 2
r is nondegenerate. As an extension to Proposition 4.4, we now show

that K(f1, . . . , fr) is also nondegenerate for any function K such that K(0) = 0,∇K(0) = 0
and ∇2K(0) � 0.

Proposition 4.22. Let Ω and U be neighborhoods of the origin 0 ∈ Rd, and let u : Ω → U
and K : U → R be real analytic maps satisfying u(0) = 0, K(0) = 0, ∇K(0) = 0 and
∇2K(0) � 0. If the ideal I = 〈u1(ω), . . . , ud(ω)〉 is monomial, then the function K ◦ u(ω) is
nondegenerate at the origin.
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Proof. Because K(0) = 0,∇K(0) = 0 and ∇2K(0) � 0, there is a linear change of coordi-
nates T : Rd → Rd such that the power series expansion of K is v2

1 + · · ·+ v2
d +O(v3) where

(v1, . . . , vd) = T (u1, . . . , ud). Moreover, v1(ω), . . . , vd(ω) generate the same monomial ideal
I as u1(ω), . . . , ud(ω). By Propositions 4.17 and 4.11(2), we see that v1(ω)2 + · · ·+ vd(ω)2 is
nondegenerate. To show that

K ◦ u(ω) = v1(ω)2 + · · ·+ vd(ω)2 +O(v(ω)3)

is nondegenerate, it suffices to show that K ◦ u(ω) and v1(ω)2 + · · ·+ vd(ω)2 have the same
principal part (see Remark 4.19 for a definition). We claim that the monomials appearing in
the term O(v(ω)3) cannot lie on any compact face of the Newton polyhedron P(K ◦u(ω)) =
P(I2). Now, any monomial in O(v(ω)3) can be written as a product ωαωα′ωα′′ of monomials
in I. Suppose α + α′ + α′′ lie in some compact face γ of P(I2). Then, by the claim in the
proof of Proposition 4.9, since ωα+α′ ∈ I2, we must have α′′ = 0, a contradiction.

4.3 Applications to Statistical Models

In this section, we use our tools to compute learning coefficients of the discrete model M in
Example 2.20. Recall that M is a näıve Bayesian network with two ternary random variables
and two hidden states. It was designed by Evans, Gilula and Guttman [18] for investigating
connections between the recovery time of 132 schizophrenic patients and the frequency of
visits by their relatives. Their data is summarized in the 3×3 contingency table (2.21), which
gives us the matrix

q̂ =
1

132

 43 16 3
6 11 10
9 18 16

 (4.2)

of relative frequencies. The model is parametrized by the map

p : Ω = ∆1×∆2×∆2×∆2×∆2 → ∆8

ω = (t, a1, a2, b1, b2, c1, c2, d1, d2) 7→ (pij)

pij = taibj + (1− t)cidj, i, j ∈ {1, 2, 3}

where a3 = 1−a1−a2, a = (a1, a2, a3)∈∆2 and similarly for b, c and d. Hence, a 3×3 matrix
in the model is a convex combination of two rank one matrices, so it has rank at most two.
In Example 2.20, the marginal likelihood integral

I =

∫
Ω

p43
11 p

16
12 p

3
13 p

6
21 p

11
22 p

10
23 p

9
31 p

18
32 p

16
33 dω

of the above data set was computed exactly.
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We now estimate this integral using the asymptotic method described in Theorem 1.17.
More specifically, we approximate I by considering the asymptotics of the function

L(N) =

∫
Ω

∏
i,j

pij(ω)−Nqij dω

where the 3×3 matrix q = (qij) is some distribution lying in the model. Ideally, we want q
to be the matrix q̂ of relative frequencies coming from the data, but this matrix rarely lies in
the model. However, we should be able to find a matrix in the model that is close to q̂. This
is a reasonable assumption because in practice, we want to study models which describe the
data well. A good candidate for q is the maximum likelihood distribution. For instance, the
matrix (4.2) of relative frequencies is not in the model because it is full rank. Using the EM
algorithm, we compute the maximum likelihood distribution

q =
1

132

 43.00153927 15.99813189 3.000328847
5.979732739 11.12298188 9.897285383
9.018728012 17.87888620 16.10238577


which comes from the maximum likelihood estimate

t = 0.5129202328

(a1, a2) = (0.09139459898, 0.3457903589),

(b1, b2) = (0.1397061214, 0.4386217768),

(c1, c2) = (0.8680689680, 0.05580725171),

(d1, d2) = (0.7549807403, 0.2380125694).

Observe that q is indeed very close to q̂. In Remark 1.19, using another discrete model, we
discuss how approximation of the likelihood integral varies with the choice of q.

Our next result states how the asymptotics of L(N) depends on q. Let Si denote the set
of rank i matrices in p(Ω). Let S21 be the set of matrices in S2 where there are permutations
of the rows and of the columns such that q11 = 0 and q12, q21, q22 are all non-zero. Let S22 be
the subset of S2 where, up to permutations, q11 = q22 = 0 and q12, q21 are non-zero. Before
we prove this theorem, let us apply it to our statistical problem. Using the exact value of I
from Example 2.20, we have

log I = −273.1911759.

Meanwhile, applying Theorem 4.23 with q ∈ S2 \ (S12 ∪ S22), we obtain the approximation

logL(132) ≈ −275.9144024. (4.3)
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This estimate could be improved if we also computed the constant C in the asymptotics of
logL(N) using techniques from Chapter 5. On the other hand, if the BIC was erroneously
applied with the model dimension d = 8, we would get

BIC = −278.3558034.

Clearly, the approximation (4.3) is closer than the BIC to the exact value of log I.

Theorem 4.23. The learning coefficient (λ, θ) of the model at q is given by

(λ, θ) =


(5/2, 1) if q ∈ S1,
(7/2, 1) if q ∈ S2 \ (S21 ∪ S22),
(4, 1) if q ∈ S21 \ S22,
(9/2, 1) if q ∈ S22.

Therefore, asymptotically as N →∞,

logL(N) ≈ N
∑
i,j

qij log qij − λ logN + (θ − 1) log logN + C

for some constant C.

We postpone the proof of this theorem to the end of this section. Let us begin with a few
remarks about our approach to this problem. Firstly, Theorem 1.11 states that the learning
coefficient (λ, θ) of the statistical model is given by

(2λ, θ) = min
ω∗∈V

RLCTΩω∗ 〈p(ω)− q〉

where V is the fiber {ω ∈ Ω : p(ω) = q} of the map p over q. Instead of restricting ourselves
to a fixed q and its fiber V , let us vary ω∗ over all of Ω. For each ω∗ ∈ Ω, we translate Ω so
that ω∗ is the origin and compute the RLCT of the fiber ideal 〈p(ω + ω∗)− p(ω∗)〉. This is
the content of Proposition 4.25. The proof of Theorem 4.23 will then consist of minimizing
these RLCTs over the fiber V for each q in the model.

Secondly, in our computations, we will often be choosing different generators for our fiber
ideal and making suitable changes of variables. Generators with few terms and small total
degree will be highly desired. One useful trick is to multiply or divide the generators by
functions f(ω) satisfying f(0) 6= 0. Such functions are units in the ring A0 of real analytic
functions so this multiplication or division will not change the ideal generated. This next
lemma also comes in handy in dealing with boundary issues.

Lemma 4.24. Let Ω ⊂ {(x1, . . . , xd) ∈ Rd} be semianalytic. Let I be a monomial ideal and
ϕ a monomial function in x1, . . . , xr. If there exists a vector ξ ∈ Rd−r such that Ω1×Ω2 ⊂ Ω
for sufficiently small ε where

Ω1 = {(x1, . . . , xr) ∈ [0, ε]r}
Ω2 = {(xr+1, . . . , xd) = t(ξ + ξ′) for all t ∈ [0, ε], ξ′ ∈ [−ε, ε]d−r},

then RLCTΩ0(I;ϕ) = RLCT0(I;ϕ).
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Proof. Because I and |ϕ| remain unchanged by the flipping of signs of x1, . . . , xr, the thresh-
old of (I;ϕ) does not depend on the choice of orthant, so RLCTΩ1(I;ϕ) = RLCT0(I;ϕ).
The lemma now follows from Proposition 4.5 and the fact that the threshold of the zero ideal
over the cone neighborhood Ω2 is (∞,−).

We now come to the most computationally intensive result in this section. Let us define
subsets Ωu = {ω∗ ∈ Ω : t∗ ∈ {0, 1}}, Ωm = {ω∗ ∈ Ω : t∗ /∈ {0, 1}} and

Ωm0 = {ω∗ ∈ Ωm : a∗ = c∗, b∗ = d∗}
Ωm0kl = {ω∗ ∈ Ωm0 : #{i : a∗i = 0} = k,#{i : b∗i = 0} = l}
Ωm1 = {ω∗ ∈ Ωm : (b∗ 6= d∗, a∗ = c∗) or (a∗ 6= c∗, b∗ = d∗)}
Ωm10 = {ω∗ ∈ Ωm1 : (a∗ = c∗,∃ i a∗i = 0) or (b∗ = d∗,∃ i b∗i = 0)}
Ωm2 = {ω∗ ∈ Ωm : a∗ 6= c∗, b∗ 6= d∗}
Ωm2ad = {ω∗ ∈ Ωm2 : ∃ i, j a∗i = d∗j = 0, c∗i 6= 0, b∗j 6= 0}
Ωm2bc = {ω∗ ∈ Ωm2 : ∃ i, j b∗i = c∗j = 0, d∗i 6= 0, a∗j 6= 0}
Ωm21 = Ωm2ad ∪ Ωm2bc

Ωm22 = Ωm2ad ∩ Ωm2bc.

Proposition 4.25. Given ω∗ ∈ Ω, let I be the ideal 〈p(ω + ω∗)− p(ω∗)〉. Then,

RLCT0 I =



(5, 1) if ω∗ ∈ Ωu,
(6, 2) if ω∗ ∈ Ωm000,
(6, 1) if ω∗ ∈ Ωm010 ∪ Ωm001 ∪ Ωm020 ∪ Ωm002,
(7, 2) if ω∗ ∈ Ωm011,
(7, 1) if ω∗ ∈ Ωm012 ∪ Ωm021,
(8, 1) if ω∗ ∈ Ωm022,
(6, 1) if ω∗ ∈ Ωm1 \ Ωm10,
(7, 1) if ω∗ ∈ Ωm10,
(7, 1) if ω∗ ∈ Ωm2 \ Ωm21,
(8, 1) if ω∗ ∈ Ωm21 \ Ωm22,
(9, 1) if ω∗ ∈ Ωm22.

Proof. The ideal I is generated by gij = fij(ω + ω∗)− fij(ω
∗) where

fij = taibj + (1− t)cidj, i, j, k ∈ {0, 1, 2}

and a0 = b0 = c0 = d0 = 1. One can check that I is also generated by g10, g20, g01, g02, and
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gij − (dj + d∗j)gi0 − (ai + a∗i )g0j, i, j ∈ {1, 2} which expand to give

c1(t
∗
1 − t) + a1(t

∗
0 + t) + tu∗1

c2(t
∗
1 − t) + a2(t

∗
0 + t) + tu∗2

d1(t
∗
1 − t) + b1(t

∗
0 + t) + tv∗1

d2(t
∗
1 − t) + b2(t

∗
0 + t) + tv∗2

a1d1 − a1t
∗
0v
∗
1 + d1t

∗
1u

∗
1

a1d2 − a1t
∗
0v
∗
2 + d2t

∗
1u

∗
1

a2d1 − a2t
∗
0v
∗
1 + d1t

∗
1u

∗
2

a2d2 − a2t
∗
0v
∗
2 + d2t

∗
1u

∗
2

where t∗0 = t∗, t∗1 = 1− t∗, u∗i = a∗i − c∗i , v∗i = b∗i − d∗i . Note that
∑

(ai + a∗i ) = 1 and
∑
a∗i = 1

so
∑
ai = 0 and similarly for b, c, d. Also,

∑
u∗i =

∑
a∗i − c∗i = 0. The same is true for v∗.

We now do a case-by-case analysis.

Case 1: ω∗ ∈ Ωm.
This implies t∗0 6= 0 and t∗1 6= 0. Since the indeterminates b1, b2, c1, c2 appear only in the

first four polynomials, this suggests the change of variables

ci = (c′i − tu∗i − ai(t
∗
0 + t))/(t∗1 − t), i = 1, 2

bi = (b′i − tv∗i − di(t
∗
1 − t))/(t∗0 + t), i = 1, 2

with new indeterminates t, a1, a2, b
′
1, b

′
2, c

′
1, c

′
2, d1, d2. In view of Proposition 4.6, the Jacobian

determinant of this substitution is a constant.

Case 1.1: ω∗ ∈ Ωm1.
This implies u∗ 6= 0, v∗ = 0 or u∗ = 0, v∗ 6= 0. Without loss of generality, we assume

v∗ = 0, u∗1 > 0 and substitute

di = (d′i + a1t
∗
0v
∗
i )/(t∗1u

∗
1 + a1), i = 1, 2.

The resulting pullback ideal is 〈b′1, b′2, c′1, c′2, d′1, d′2〉. If ω∗ lies in the interior of Ω, we use either
Newton polyhedra or Proposition 4.5 to show that the RLCT of this monomial ideal is (6, 1).
If ω∗ lies on the boundary of Ω, the situation is more complicated. Since we are considering
a subset of a neighborhood of ω∗, the corresponding Laplace integral from Proposition 4.2a
is smaller so the threshold is at least (6, 1). To compute it exactly, we need blowups to
separate the coordinate hyperplanes and the hypersurfaces defining the boundary.

Because −u∗1 = u∗2 + u∗3, we cannot have u∗2 = u∗3 = 0. Suppose u∗2 6= 0 and u∗3 6= 0. We
consider a blowup where one of the charts is given by the monomial map t = s, ai = sa′i, c

′
1 =

rs, c′2 = rsc′′2, b
′
i = rsb′′i , d

′
i = rsd′′i . Here, the pullback pair is (〈rs〉; r5s8). Now, we study the

inequalities which are active at ω∗. For instance, if b∗1 = 0, then ω∗ lies on the boundary
defined by 0 ≤ b1 + b∗1. After the various changes of variables, the inequalities are as shown



CHAPTER 4. REAL LOG CANONICAL THRESHOLDS 86

below, where b′′3 = −b′′1 − b′′2 and similarly for c′′3, d
′′
3 and a′3. Note that the inequality for

a∗1 = 0 is omitted because a∗1 = 0 implies u∗1 = −c∗1 ≤ 0. Similar conditions on the u∗i , v
∗
i hold

for the other inequalities.

b∗i = 0 : 0 ≤ rs(b′′i − d′′i (t∗1 − s)/(t∗1u
∗
1 + sa′1))/(t

∗
0 + s)

d∗i = 0 : 0 ≤ rsd′′i /(t
∗
1u

∗
1 + sa′1)

c∗1 = 0 : 0 ≤ s(−u∗1 + a′1(t
∗
0 + s) + r)/(t∗1 − s)

c∗2 = 0 : 0 ≤ s(−u∗2 + a′2(t
∗
0 + s) + rc′′2)/(t∗1 − s) u∗2 > 0

c∗3 = 0 : 0 ≤ s(−u∗3 + a′3(t
∗
0 + s)− r − rc′′2)/(t∗1 − s) u∗3 > 0

a∗2 = 0 : 0 ≤ sa′2 u∗2 < 0
a∗3 = 0 : 0 ≤ sa′3 u∗3 < 0

In applying Lemma 4.24, the choice of coordinates is important. For instance, if b∗2 =
b∗3 = 0, we choose coordinates b′′2 and b′′3 and set b′′1 = −b′′2 − b′′3. The same is done for
the d′′i . The pullback pair is unchanged by these choices. Now, with coordinates (r, s) and
(b′′i1 , b

′′
i2
, d′′j1 , d

′′
j2
, c′′2, a

′
2, a

′
3), we apply the lemma with the vector ξ = (2, 2, u∗1, u

∗
1, 1, 1, 1), so the

threshold is RLCT0(rs; r
5s8) = (6, 1).

Now, if only one of u∗2, u
∗
3 is zero, suppose u∗2 = 0, u∗3 6= 0 without loss of generality.

If a∗2 = c∗2 6= 0, then the arguments of the previous paragraph show that the RLCT is
again (6, 1). If a∗2 = c∗2 = 0, we blow up the origin in R7 and consider the chart where
a2 = s, c′i = sc′′i , b

′
i = sb′′i , d

′
i = sd′′i . The pullback pair is (〈sb′′1, sb′′2, sc′′1, sc′′2, sd′′1, sd′′2〉; s6). The

active inequalities for a∗2 = c∗2 = 0 are

c∗2 = 0 : 0 ≤ s(c′′2 − t∗0 + t)/(t∗1 − t)
a∗2 = 0 : 0 ≤ s.

Near the origin in (s, b′′1, b
′′
2, c

′′
1, c

′′
2, d

′′
1, d

′′
2) ∈ R7, these inequalities imply s = 0 so the new

region M defined by the active inequalities is not full at the origin. Thus, we can ignore the
origin in computing the RLCT. All other points on the exceptional divisor of this blowup lie
on some other chart of the blowup where the pullback pair is (s; s6), so the RLCT is at least
(7, 1). In the chart where c2 = s, c1 = sc′′1, a2 = sa′2, b

′
i = sb′′i , d

′
i = sd′′i , we have the active

inequalities below. Note that c∗3 6= 0 because u∗3 = −u∗1 < 0.

b∗i = 0 : 0 ≤ s(b′′i − d′′i (t∗1 − t)/(t∗1u
∗
1 − (sa′2 + a3))/(t

∗
0 + t)

d∗i = 0 : 0 ≤ sd′′i /(t
∗
1u

∗
1 − (sa′2 + a3))

c∗1 = 0 : 0 ≤ (sc′′1 − tu∗1 + (sa′2 + a3)(t
∗
0 + t))/(t∗1 − t)

c∗2 = 0 : 0 ≤ s(1− a′2(t
∗
0 + t))/(t∗1 − t)

a∗2 = 0 : 0 ≤ sa′2
a∗3 = 0 : 0 ≤ a3

Again, choosing suitable coordinates in the b′′i and d′′i , we find that the RLCT is (7, 1) by using
Lemma 4.24 with ξ = (2, 2, u∗1, u

∗
1, 1, 1, 1,−1) in coordinates (b′′i1 , b

′′
i2
, d′′j1 , d

′′
j2
, a′2, a3, c

′′
1, t).
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Case 1.2: ω∗ ∈ Ωm2.
This implies u∗ 6= 0, v∗ 6= 0. Without loss of generality, suppose that u∗1 6= 0. If ω∗ ∈ Ωm21,

we further assume that a∗1 = d∗j = 0, u∗1 6= 0, v∗j 6= 0. Substituting

di = (d′i + a1t
∗
0v
∗
i )/(a1 + t∗1u

∗
1), i = 1, 2

a2 = (a′2 + a1u
∗
2)/u

∗
1,

the pullback ideal is 〈a′2, b′1, b′2, c′1, c′2, d′1, d′2〉 so the RLCT is at least (7, 1). Note that ai =
(a′2w

∗
i + a1u

∗
i )/u∗1 for i = 1, 2, 3 where w∗i = 0, 1,−1 respectively. If ω∗ is not in Ωm21, we

consider the blowup chart a′2 = s, b′i = sb′′i , c
′
i = sc′′i , d

′
i = sd′′i . The active inequalities are as

follows. The symbol v− denotes v∗i ≤ 0.

b∗i = 0 : 0 ≤ [sb′′i − tv∗i − (sd′′i + a1t
∗
0v
∗
i )(t∗1 − t)/(t∗1u

∗
1 + a1)]/(t

∗
0 + t) v−

c∗i = 0 : 0 ≤ [sc′′i − tu∗i − (sw∗i + a1u
∗
i )(t∗0 + t)/u∗1]/(t

∗
1 − t) u+

a∗i = 0 : 0 ≤ (sw∗i + a1u
∗
i )/u∗1 u−

d∗i = 0 : 0 ≤ (sd′′i + a1t
∗
0v
∗
i )/(t∗1u

∗
1 + a1) v+

The crux to understanding the inequalities is this: if a∗i = d∗j = 0, u∗i 6= 0, v∗j 6= 0, the
coefficient of a1 appears with different signs in the inequalities for a∗i = 0 and d∗j = 0. This
makes it difficult to choose a suitable vector ξ for Lemma 4.24. Similarly, if b∗i = c∗j =
0, v∗i 6= 0, u∗j 6= 0, the coefficient of u∗1t+ t∗0a1 appears with different signs. Fortunately, since
ω∗ /∈ Ωm21, we do not have such obstructions and it is an easy exercise to find the vector ξ.
Thus, the RLCT is (7, 1).

If ω∗ ∈ Ωm21 \ Ωm22, we blow up a1 = s, a′2 = sa′′2, b
′
i = sb′′i , ci = sc′′i , di = sd′′i . The active

inequalities for a∗1 = d∗j = 0 imply that the new region M is not full at the origin of this chart.
Thus, we shift our focus to the other charts of the blowup where the pullback pair is (s; s7), so
the RLCT is at least (8, 1). In the chart where a′2 = s, a1 = sa′1, b

′
i = sb′′i , ci = sc′′i , di = sd′′i ,

we do not have obstructions coming from any b∗i = c∗j = 0, v∗i 6= 0, u∗j 6= 0 so it is again easy
to find the vector ξ for Lemma 4.24. The threshold is exactly (8, 1).

If ω∗ ∈ Ωm22, consider the following two charts out of the nine charts in the blowup of
the origin in R9.

Chart 1: a1 = s, t = st′, a′2 = sa′′2, b
′
i = sb′′i , ci = sc′′i , di = sd′′i

Chart 2: t = s, a1 = sa′1, a
′
2 = sa′′2, b

′
i = sb′′i , ci = sc′′i , di = sd′′i

The inequalities for a∗i = d∗j = 0, u∗i 6= 0, v∗j 6= 0 and b∗i = c∗j = 0, v∗i 6= 0, u∗j 6= 0 imply that
the new region M is not full at points outside of the other seven charts, so we may ignore
these two charts in computing the RLCT. Indeed, for Chart 1, the active inequalities

a∗i = 0 : 0 ≤ s(a′′2w
∗
i + u∗i )/u∗1 u−

d∗i = 0 : 0 ≤ s(d′′i + t∗0v
∗
i )/(t∗1u

∗
1 + s) v+
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tell us that a′′2 or d′′2 must be non-zero for M to be full. In Chart 2, suppose M is full at
some point x where a′′2 = b′′1 = b′′2 = c′′1 = c′′2 = d′′1 = d′′2 = 0. Then,

a∗i = 0 : 0 ≤ s(a′′2w
∗
i + a′1u

∗
i )/u∗1 u−

d∗i = 0 : 0 ≤ s(d′′i + a′1t
∗
0v
∗
i )/(t∗1u

∗
1 + sa′1) v+

imply that a′1 = 0 at x. However, if this is the case, the inequalities

b∗i = 0 : 0 ≤ s[b′′i − v∗i − (d′′i + a′1t
∗
0v
∗
i )(t∗1 − s)/(t∗1u

∗
1 + sa′1)]/(t

∗
0 + s) v−

c∗i = 0 : 0 ≤ s[c′′i − u∗i − (a′′2w
∗
i + a′1u

∗
i )(t∗0 + s)/u∗1]/(t

∗
1 − s) u+

forces b′′i or c′′i to be non-zero for some i, a contradiction. Thus, we shift our focus to the
other seven charts where the pullback pair is (s; s8) and the RLCT is at least (9, 1). In the
chart for a′2 = s, a1 = sa′1, t = st′, b′i = sb′′i , c

′
i = sc′′i , d

′
i = sd′′i , note that we cannot have both

a∗2 = 0 and a∗3 = 0 because we assumed a∗1 = 0. It is now easy to find the vector ξ for Lemma
4.24, so the threshold is (9, 1).

Case 1.3: ω∗ ∈ Ωm0.
This implies u∗i = v∗i = 0 for all i. The pullback ideal can be written as

〈b′1, b′2, c′1, c′2〉+ 〈a1, a2〉〈d1, d2〉

whose RLCT over an interior point of Ω is (6, 2) by Proposition 4.5. This occurs in Ωm000

where none of the inequalities are active. Now, suppose the only active inequalities come
from a∗1 = c∗1 = 0. We blow up the origin in {(a1, c

′
1) ∈ R2}. In the chart given by

a1 = a′1, c
′
1 = a′1c

′′
1, the new region M is not full at the origin, so we only need to study the

chart where c′1 = c′′1, a1 = c′′1a
′
1. The pullback pair becomes (〈c′′1〉+〈b′1, b′2, c′2〉+〈a2〉〈d1, d2〉; c′′1),

and a simple application of Lemma 4.24 and Proposition 4.5 shows that the threshold is (6, 1).
In this fashion, we study the different scenarios and summarize the pullback pairs and

thresholds in the table below.

Inequalities Pullback pair RLCT

− (〈b′1, b′2, c′1, c′2〉+ 〈a1, a2〉〈d1, d2〉; 1) (6, 2)
a∗1 = 0 (〈b′1, b′2, c′′1, c′2〉+ 〈a2〉〈d1, d2〉; c′′1) (6, 1)
a∗1 = 0, b∗1 = 0 (〈b′′1, b′2, c′′1, c′2〉+ 〈a2〉〈d2〉; b′′1c

′′
1) (7, 2)

a∗1 = 1 (〈b′1, b′2, c′′1, c′′2〉; c′′1c
′′
2) (6, 1)

a∗1 = 1, b∗1 = 0 (〈b′′1, b′2, c′′1, c′′2〉; b′′1c
′′
1c
′′
2) (7, 1)

a∗1 = 1, b∗1 = 1 (〈b′′1, b′′2, c′′1, c′′2〉; b′′1b
′′
2c
′′
1c
′′
2) (8, 1)

For example, the case a∗3 = c∗3 = 1 corresponds to a∗1 = a∗2 = c∗1 = c∗2 = 0. Here, we blow
up the origins in {(a1, c

′
1) ∈ R2} and {(a2, c

′
2) ∈ R2}. As before, we can ignore the other

charts and just consider the one where a1 = c′′1a
′
1, c

′
1 = c′′1, a2 = c′′2a

′
2, c

′
2 = c′′2. The pullback
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pair is (〈c′′1〉+ 〈c′′2〉+ 〈b′1, b′2〉, c′′1c′′2). If b∗i 6= 0 for all i, the RLCT is (6, 1) by Lemma 4.24 and
Proposition 4.5.

Case 2: ω∗ ∈ Ωu.
Without loss of generality, assume t∗ = 0 and substitute

ci = (c′i − t(ai + u∗i ))/(1− t) i = 1, 2
di = (d′i − t(bi + v∗i ))/(1− t) i = 1, 2.

The pullback ideal is the sum of 〈c′1, c′2, d′1, d′2〉 and

〈t〉〈a1 + u∗1, a2 + u∗2〉〈b1 + v∗1, b2 + v∗2〉.

Since c′3 = −c′1 − c′2 and similarly for the d′i, ai, bi, u
∗
i and v∗i , it is useful to write this ideal

more symmetrically as the sum of 〈c′1, c′2, c′3〉, 〈d′1, d′2, d′3〉 and

〈t〉〈a1 + u∗1, a2 + u∗2, a3 + u∗3〉〈b1 + v∗1, b2 + v∗2, b3 + v∗3〉.

Meanwhile, the inequalities are

a∗i = 0 : 0 ≤ ai

c∗i = 0 : 0 ≤ (c′i − t(ai + u∗i ))/(1− t) u∗i ≥ 0
b∗j = 0 : 0 ≤ bj
d∗j = 0 : 0 ≤ (d′j − t(bj + v∗j ))/(1− t) v∗j ≥ 0.

We now relabel the indices of the ai and c′i, without changing the bj and d′j, so that the
active inequalities are among those from a∗1 = 0, a∗2 = 0, c∗i1 = 0, c∗i2 = 0. The bj and d′j are
thereafter also relabeled so that the inequalities come from b∗1 = 0, b∗2 = 0, d∗j1 = 0, d∗j2 = 0.
We claim that the new region M contains, for small ε, the orthant neighborhood

{(a1, a2, b1, b2, ci1 , ci2 , dj1 , dj2 ,−t) ∈ [0, ε]9}.

Indeed, the only problematic inequalities are

c∗3 = 0 : 0 ≤ (c′3 − t(−a1 − a2 + u∗i ))/(1− t) u∗3 = 0
d∗3 = 0 : 0 ≤ (d′3 − t(−b1 − b2 + v∗j ))/(1− t) v∗3 = 0.

However, these inequalities cannot occur because for instance, u∗3 = 0 and c∗3 = 0 implies
a∗3 = 0, a contradiction since the ai were relabeled to avoid this. Finally, the threshold of
〈t〉 is (1, 1) while that of 〈a1 + u∗1, a2 + u∗2〉 and 〈b1 + v∗1, b2 + v∗2〉 are at least (2, 1) each. By
Proposition 4.5, the RLCT of their product is (1, 1) and that of the pullback ideal we were
originally interested in is (5, 1).
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Proof of Theorem 4.23. Given a matrix q = (qij), the learning coefficient (λ, θ) of the model
at q is the minimum of RLCTs at points ω∗ ∈ Ω where p(ω∗) = q. The first statement then
follows logically from the five claims below:

p(Ωu) = S1, p(Ωm0) ⊂ S1, p(Ωm0) ⊂ S1, p(Ωm21) = S21, p(Ωm22) = S22.

The first three claims are trivial. The proofs of the last two claims are similar, so we only
show p(Ωm22) = S22. First, it is easy to check that p(Ωm22) ⊂ S22. Now, if p(ω∗) = q ∈ S22,
then q11 = t∗a∗1b

∗
1 + (1− t∗)c∗1d∗1 = 0 implies that a∗1 = 0 or b∗1 = 0 because the parameters are

positive. Without loss of generality, suppose a∗1 = 0. Because q12 6= 0, we have c∗1 6= 0 which
leads us to d∗1 = 0 and b∗1 6= 0. The condition q22 = 0 then shows that b∗2 = c∗2 = 0, a∗2 6=
0, d∗2 6= 0. Therefore, ω∗ ∈ Ωm22 and p(Ωm22) ⊃ S22.

The last statement of the theorem is a consequence of Theorem 1.17.

Remark 4.26. This is a difficult example because of the algebraic interactions between the
boundary of Ω and the fiber ideal I of the model. If we were computing the RLCT only at
points ω∗ which lie in the interior of Ω, the calculation would have been much easier. In
future work, we hope to find an algorithm involving Newton polyhedra for computing the
RLCT in situations where the boundary has normal crossings.

In this chapter, we investigated the theory of real log canonical thresholds of ideals. A
treatment of this topic was necessary for the analysis of our statistical models, but not much
is known in the literature except for their relationship to jumping numbers and complex
log canonical thresholds [47]. Hence, many of the results in this chapter are new, and they
were inspired by analogous results for complex log canonical thresholds. In Section 4.1, we
explored some of the fundamental properties of RLCTs of ideals. We gave several equivalent
definitions, showed that they are independent of the choice of generators, and derived sum,
product and chain rules for calculating them. In Section 4.2, we extended Varchenko’s
concept of Newton nondegeneracy to ideals, and introduced the notion of sos-nondegeneracy.
These toric techniques allowed us to give an upper bound for the RLCT of arbitrary ideals
(Proposition 4.8) and to compute them exactly for monomial ideals (Theorem 4.18). We
applied these tools in Section 4.3 to a difficult statistical example where boundary issues
complicate the computation. We derived the learning coefficient of the model and used it to
approximate the marginal likelihood integral of actual health data [18].
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Chapter 5

Higher Order Asymptotics

Let Ω be a compact semianalytic subset of Rd, f : Ω → R be real analytic over Ω, and
ϕ : Ω → R be nearly analytic over Ω. We consider the Laplace integral

Z(n) =

∫
Ω

e−n|f(x)||ϕ(x)|dx.

By Theorem 3.16, Z(n) has an asymptotic expansion

Z(n) ≈
∑

α

d∑
i=1

cα,i n
−α(log n)i−1, n→∞

In this chapter, we are interested in computing the coefficients cα,i in this expansion.

Definition 5.1. The leading coefficient coefΩ(f ;ϕ) is the coefficient cλ,θ of the leading term
cλ,θ n

−λ(lnn)θ in the asymptotic expansion of Z(n). Note that (λ, θ) is the real log canonical
threshold RLCTΩ(f ;ϕ).

Theorem 3.16 gives us a way to compute this leading coefficient from the Laurent expan-
sion of the zeta function

ζ(z) =

∫
Ω

|f(x)|−z|ϕ(x)|dx, z ∈ C

associated to Z(n). Recall that Γ represents the Gamma function.

Proposition 5.2. The leading coefficient coefΩ(f ;ϕ) is given by

cλ,θ =
(−1)θ Γ(λ)

(θ − 1)!
dλ,θ

where dλ,θ is the coefficient of (z − λ)−θ in the Laurent expansion of ζ(z).

Remark 5.3. This project to investigate leading coefficients and higher order coefficients of
the asymptotic expansions of Laplace integrals began with a discussion with Robin Pemantle
in April 2009 about asymptotics of generating functions.
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5.1 Sum, Product and Chain Rules

In Section 4.1.3, we saw sum, product and chain rules for the RLCT of ideals with disjoint sets
of indeterminates. Incidentally, their proofs give us similar rules for the leading coefficients.

As before, let fx ∈ AX and fy ∈ AY whereX ⊂ Rm and Y ⊂ Rn are compact semianalytic
subsets. It is useful to think of fx and fy as polynomials or analytic functions with disjoint
sets of indeterminates {x1, . . . , xm} and {y1, . . . , yn}. Let ϕx : X → R and ϕy : Y → R be
nearly analytic. By composing with projections X×Y → X and X×Y → Y , we may regard
fx, fy, ϕx and ϕy as functions which are real analytic over X×Y .

For the proofs, let Zx(n) and Zy(n) be the Laplace integrals corresponding to the triples
(X, fx, ϕx) and (Y, fy, ϕy) respectively. Let ζx(z) and ζy(z) be the associated zeta functions.
We define (λx, θx) = RLCTX(fx;ϕx), cx = coefX(fx;ϕx) and similarly for (λy, θy) and cy.

Proposition 5.4 (Sum Rule). For functions fx, ϕx and fy, ϕy with disjoint indeterminates,

coefX×Y (fx + fy;ϕxϕy) = coefX(fx;ϕx) · coefY (fy;ϕy)

Proof. Let (λ, θ) = RLCTX×Y (fx + fy;ϕxϕy) and c′ = coefX×Y (fx + fy;ϕxϕy). Then,

Zx(n) ≈ cx n
−λx(log n)θx−1,

Zy(n) ≈ cy n
−λy(log n)θy−1,

Z(n) ≈ c n−λ(log n)θ−1

asymptotically. These Laplace integrals are related by the equation

Z(n) ≈
∫

X×Y
e−nfx−nfy |ϕx||ϕy| dx dy

=
∫

X
e−nfx|ϕx| dx ·

∫
Y
e−nfy |ϕy| dy = Zx(n)Zy(n)

so c′ = cxcy as required.

Proposition 5.5 (Product Rule). For functions fx, ϕx and fy, ϕy with disjoint indetermi-
nates, if λx = λy, then

coefΩx×Ωy(fxfy;ϕxϕy) =
(θx − 1)!(θy − 1)!

(θx + θy − 1)! Γ(λx)
· coefΩx(fx;ϕx) · coefΩy(fy;ϕy).

On the other hand, if λx < λy, then

coefΩx×Ωy(fxfy;ϕxϕy) = coefΩx(fx;ϕx) · ζy(λx).

Proof. Let (λ, θ) = RLCTX×Y (fxfy;ϕxϕy) and c′ = coefX×Y (fxfy;ϕxϕy). Then,

ζx(z) = dx(z − λx)−θx + · · ·
ζy(z) = dy(z − λy)−θy + · · ·
ζ(z) = d′(z − λ)−θ + · · ·
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are the Laurent expansions of the corresponding zeta functions for some coefficients dx, dy

and d′. These zeta functions are related by the equation

ζ(z) =
∫

X×Y

(
fxfy

)−z|ϕx||ϕy| dx dy
=

∫
X
f−z

x |ϕx| dx ·
∫

Y
f−z

y |ϕy| dy = ζx(z)ζy(z).

Thus, if λx = λy, then d′ = dxdy. On the other hand, if λx < λy, then d′ = dx ζy(λx). The
two required formulas now follow from Proposition 5.2.

Proposition 5.6 (Chain Rule). Let Ω ⊂ Rd be a compact semianalytic subset and f : Ω → R
a real analytic function. If W is an open neighborhood of Ω, M is a real analytic manifold,
ρ : M → W is a change of variables away from V(f) and M = ρ−1(Ω), then

coefΩ(f ;ϕ) = coefM(f ◦ ρ; (ϕ ◦ ρ)|ρ′|).

Proof. Direct consequence of applying a change of variable to the Laplace integral.

There are a few simple base cases where the leading coefficient computes easily.

Proposition 5.7. Let Ω ⊂ R be a compact neighborhood of the origin. For k > 0,m ≥ 0,

coefΩ(xk;xm) =
2

k
Γ

(
m+ 1

k

)
.

Proof. We perform the computation that was implicit in Proposition 3.7. For ε > 0,∫ ε

−ε

|x−zk+m|dx = 2

∫ ε

0

x−zk+mdx

=
2 ε−zk+m+1

−zk +m+ 1

=
2

−zk +m+ 1
e(−zk+m+1) log ε

=
−2/k

z − (m+ 1)/k

(
1 + (−zk +m+ 1) log ε+ · · ·

)
More generally, the coefficient at z = (m+1)/k in the Laurent expansion of the zeta function

ζ(z) =

∫
Ω

|x−zk+m|dx

is −2/k. The formula now follows from Proposition 5.2.

We now give some consequences of applying the sum, product and chain rules to Propo-
sition 5.7. Our next corollary is not an asymptotic result but an exact result. It was also
proved by Pemantle and Wilson [42, §3] using non-asymptotic methods.
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Corollary 5.8. For m ≥ 0,

∫
R
e−nx2|xm|dx =


m!
√
π

(m/2)! 2m
n−(m+1)/2 for m even,(

m− 1

2

)
!n−(m+1)/2 for m odd.

Proof. By Proposition 5.7, we have the asymptotics

Z(n) =

∫
R
e−nx2|xm|dx ≈ Γ

(
m+ 1

2

)
n−(m+1)/2.

Making the substitution x = ty, we get

Z(n) =

∫
R
e−nt2y2|tmym|tdy = tm+1Z(nt2)

Now, because of the asymptotics, as t→∞,

Z(nt2)

Γ
(

m+1
2

)
(nt2)−(m+1)/2

→ 1.

This ratio is independent of t because it evaluates to

Z(n)

Γ
(

m+1
2

)
n−(m+1)/2

.

Thus, the asymptotic result is exact and the desired formula now follows from

Γ

(
m+ 1

2

)
=


m!
√
π

(m/2)! 2m
for m even,(

m− 1

2

)
! for m odd

which are standard formulas for the Gamma function.

Using this corollary, the asymptotics of the Laplace integral∫
Rd

e−n(x2
1+···+x2

d)|xm1
1 · · ·xmd

d |dx =
d∏

i=1

∫
R
e−nx2

i |xmi
i |dx

can be computed by multiplying the formulas for each mi. Lastly, as an extension of Propo-
sition 3.7, we compute the leading coefficient of the asymptotics for a Laplace integral with
monomial phase and amplitude functions.
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Corollary 5.9. For vectors κ, τ ∈ Zd
≥0, suppose that κ 6= (0, . . . , 0) and that

λ =
τ1 + 1

κ1

= · · · =
τθ + 1

κθ

<
τθ+1 + 1

κθ+1

≤ · · · ≤ τd + 1

κd

for some λ and θ. Then, asymptotically as n→∞,∫
[0,1]d

e−nωκ

ωτdω ≈ Γ(λ)

(θ − 1)!
∏d

i=1 κi

∏d
i=θ+1(−λκi + τi + 1)

n−λ(log n)θ−1.

Proof. We apply the product rule to the fact that

coef [0,1](ω
κi
i ;ωτi

i ) =
1

κi

Γ

(
τi + 1

κi

)
and that for ω̃ = (ωθ+1, . . . , ωd) and similarly for κ̃ and τ̃ , we compute

ζ̃(λ) =

∫
[0,1]d−θ

ω̃−λκ̃+τ̃dω̃ =
d∏

i=θ+1

1

−λκi + τi + 1
.

5.2 Leading Coefficient

In this section, we compute the leading coefficient coef [0,1]d(f ;ωτ ) of the asymptotic expansion
of a Laplace integral Z(n) with a nondegenerate and nonnegative phase f and a monomial
amplitude ωτ in a unit hypercube [0, 1]d at the origin.

Let us recall facts about nondegenerate functions and toric resolutions from Chapter 3.
Suppose f : W → R is real analytic in some neighborhood W ⊂ Rd of the origin. Let F
be a smooth refinement of the normal fan F(f) of the Newton polyhedron P(f). We can
associated to F a smooth toric variety P(f) and a blowup map ρF : P(F) → Rd which is
defined by monomial maps ρσ on affine charts Uσ ' Rd for each maximal cone σ of F . More
specifically, if σ is minimally generated by v1, . . . , vd ∈ Zd with vi = (vi1, . . . , vid), the map
ρσ : Uσ → Rd is defined by µ 7→ ω = µv, i.e.

ω1 = µv11
1 µv21

2 · · ·µvd1
d

ω2 = µv12
1 µv22

2 · · ·µvd2
d

...

ωd = µv1d
1 µv2d

2 · · ·µvdd
d .

Here, v is the matrix (vij) where each generator vi forms a row of v. Because F refines F(f),
σ is contained in some maximal cone σ′ of F(f). Let α ∈ Rd be the vertex of P(f) that is
dual to σ′. This means that in the matrix product vα, for each 1 ≤ i ≤ d,

(vα)i = 〈vi, α〉 ≤ 〈vi, α
′〉 for all α′ ∈ P(f).
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As seen in the proof of Theorem 4.15, after the monomial change of variables pσ : µ 7→ ω = µv,
we have f(µv) = g(µ)µvα where g(µ) is the strict transform of f(ω).

Given a vector τ ∈ Zd of nonnegative integers, let lτ be the τ -distance of P(f) and θτ its
multiplicity. Theorem 4.13 says that if f is nondegenerate, then ρF restricted to W resolves
the singularity of f at the origin. Furthermore, if f is nonnegative, then asymptotically∫

Ω

e−nf(ω)|ωτ |dω ≈ Cn−λ(log n)θ−1, n→∞ (5.1)

where (λ, θ) = (1/lτ , θτ ), C > 0 is a constant and Ω ⊂ W is a sufficiently small neighborhood
of the origin. By scaling the coordinates appropriately, we may assume that Ω contains the
hypercube [−1, 1]d. Also, to simplify the computations, we break up [−1, 1]d into its 2d unit
orthants and consider the asymptotics in each orthant separately. Without loss of generality,
we let Ω = [0, 1]d. Now, on the other hand, given a nondegenerate function f and Ω = [0, 1]d,
how do we know if Ω is small enough for the asymptotics (5.1) hold? One sufficient condition
is that the strict transform g does not vanish in ρ−1

F Ω. Indeed, if this occurs, it follows by
definition that ρF is a resolution of singularities for f over Ω, and the asymptotics (5.1) can
then be computed explicitly from this resolution.

In computing the τ -distance, we intersected the ray {t(τ + 1) : t ≥ 0} with the Newton
polyhedron P(f). Let στ ∈ F(f) denote the cone corresponding to the face of P(f) at this
intersection. We call στ the τ -cone and note that its dimension is exactly θ = θτ . Now, in
the refinement F of F(f), let Fτ be the set of maximal cones which intersect στ in dimension
θ. For each cone σ in Fτ , if v is the matrix whose rows vi are the minimal generators of σ,
we require that the first θ rows of v lie in the τ -cone στ . Because of the special role played
by the first θ coordinates, we write a vector µ ∈ Uσ ' Rd as (µ̂, µ̄) ∈ Rθ×Rd−θ.

Finally, before we present the formula for the leading coefficient coef [0,1]d(f ;ωτ ), we need
to understand the geometry of the blowup of the unit hypercube [0, 1]d.

Lemma 5.10. Let F be a smooth locally complete fan in Rd. The blowup ρ−1
F [0, 1]d in P(F)

of the unit hypercube [0, 1]d is the union of hypercubes

Hσ := [0, 1]d ⊂ Uσ ' Rd

as σ varies over maximal cones of F . The Hσ intersect only along their boundaries.

Proof. For each maximal cone σ in F , the blowup map ρF restricted to the open affine Uσ is
given by µ 7→ ω = µv where the rows of the matrix v are minimal generators vi of σ. Taking
logarithms of ω = µv, we get (− logω) = (− log µ)v where logω and log µ are row vectors
(logωi) and (log µi). As µ varies over the unit hypercube Hσ, the vector − log µ varies over
the positive orthant. This implies that − logω takes all values in the cone σ generated by the
vi. Because F is locally complete, all points in the positive orthant have a unique preimage
in ∪Hσ under the map − log ρF , except at the boundaries of the maximal cones.
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Theorem 5.11. Let τ ∈ Zd
≥0 and let the real analytic function f : [0, 1]d → R be nondegen-

erate and nonnegative. Let F be a smooth refinement of F(f) such that the strict transform
g of f under the blowup map ρF is positive over ρ−1

F [0, 1]d. Then, asymptotically∫
[0,1]d

e−nf(ω)ωτdω ≈ Cn−λ(log n)θ−1, n→∞

where (λ, θ) = (1/lτ , θτ ) and

C = coef [0,1]d(f ;ωτ ) =
Γ(λ)

(θ − 1)!

∑
σ∈Fτ

θ∏
i=1

(vα)−1
i

∫
[0,1]d−θ

g(0, µ̄)−λµ̄m−1dµ̄.

Remark 5.12. For each σ ∈ Fτ in the above sum, v is the matrix of minimal generators of
σ, α ∈ P(f) is the vertex dual to σ, m = (m̂,m) = v(−λα+ τ + 1) and g(µ̂, µ̄) = f(µv)µ−vα

is the strict transform of f(ω) in the affine chart Uσ.

Proof. Given Theorem 4.14 and Proposition 5.2, we only need to compute the coefficient of
(z − λ)−θ in the Laurent expansion of the zeta function

ζ(z) =

∫
[0,1]d

f(ω)−zωτdω. (5.2)

Let F be any smooth refinement of F(f). Applying the blowup ρF as a change of variable
to the zeta function and by Lemma 5.10,

ζ(z) =
∑
σ∈F

∫
Hσ

f(µv)−zµv(τ+1)−1dµ.

where the sum is over maximal cones σ of F . In this sum, the only cones which contribute a
(z−λ)−θ term to the Laurent expansion are cones which intersect the τ -cone in dimension θ.
Also, f(µv) = g(µ)µvα. Thus, we want to compute the coefficient of (z − λ)θ in∑

σ∈Fτ

∫
[0,1]d

f(µv)−zµv(τ+1)−1dµ =
∑
σ∈Fτ

∫
[0,1]d

g(µ)−zµ−vαz+v(τ+1)−1dµ. (5.3)

Now, let us write the strict transform g(µ) as

g(µ̂, µ̄) = g(0, µ̄) + µ1g1(µ) + · · ·+ µdgd(µ)

where g(0, µ̄) is the sum of terms in the power series of g(µ) which involve only the variables
µ̄ = (µθ+1, . . . , µd), and g1(µ), . . . , gd(µ) are some analytic functions. Because g(µ) is positive
over Hσ = [0, 1]d, so is g(0, µ̄). Applying the generalized multinomial expansion, we get

g(µ)−z = g(0, µ̄)−z + terms involving µ1, . . . , µθ.
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The terms involving µ1, . . . , µθ do not give a (z − λ)−θ term, so we restrict our attention to

∑
σ∈Fτ

θ∏
i=1

1

(−vαz + v(τ + 1))i

∫
[0,1]d−θ

g(0, µ̄)−z

d∏
i=θ+1

µ
(−vαz+v(τ+1)−1)i

i dµ. (5.4)

Now, since

λ =
(v(τ + 1))1

(vα)1

= · · · =
(v(τ + 1))θ

(vα)θ

<
(v(τ + 1))i

(vα)i

for i = θ + 1, . . . , d,

it follows that −1 < (−vαλ + v(τ + 1)− 1)i for i = θ + 1, . . . , d, so each integral in (5.4) is
well-defined at z = λ. Therefore, the coefficient of (z − λ)θ is

(−1)θ
∑
σ∈Fτ

θ∏
i=1

(vα)−1
i

∫
[0,1]d−θ

g(0, µ̄)−λµ̄m−1dµ̄

where m = (m̂,m) = v(−λα + τ + 1) and the result follows.

5.3 Higher Order Coefficients

We now give an algorithm for computing the higher order asymptotics of Laplace integrals
with a nondegenerate phase function. As before, we assume that the amplitude function is
monomial, and that the domain of integration is the unit hypercube [0, 1]d.

Our main tool will be equation (3.10) in Theorem 3.16, which expresses the higher order
asymptotics in terms of coefficients in the Laurent expansion of the associated zeta function.
We will also need to work with subseries of the power series expansion of the strict transform
g(µ). For instance, in Theorem 5.11, we used the function g(0, µ̄) which is the sum of terms
not involving the variables µ1, . . . , µθ. Let us introduce notation for these subseries. Suppose
we have variables µ = (µ1, . . . , µd), a power series g(µ) =

∑
α cαµ

α, an integer vector δ ∈ Zd
≥0

and a vector δ+ which comes from annotating some of the entries of δ with a + sign. Let
S be the set of all vectors α ∈ Zd such that for each i, αi ≥ δi if δ+

i is annotated with a +
sign, and αi = δi otherwise. We define the subseries

g[δ+](µ) =
∑
α∈S

cαµ
α.

For example, suppose µ = (µ1, µ2, µ3) and let g(µ) =
∑

α cαµ
α be a formal power series. Let

δ = (2, 0, 1) and δ+ = (2, 0, 1+). Then, S = {α ∈ Zd : α1 = 2, α2 = 0, α3 ≥ 1} and

g[2, 0, 1+](µ) =
∑

α1=2,α2=0,α3≥1

cαµ
α.
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Recursively, we can compute the power series g[δ+](µ) using the formula

g[. . . , (ij + 1)+, . . .] = g[. . . , i+j , . . .]− g[. . . , ij, . . .], ij ≥ 0.

The base cases consist of all vectors δ+ where only the zeros are annotated with the + signs.
It is easy to see that

g[i1, . . . , ik, 0
+, . . . , 0+](µ) =

µi1
1 · · ·µ

ik
k

i1! · · · ik!
· ∂ i1+···+ikg

∂µi1
1 · · · ∂µ

ik
k

(0, . . . , 0, µk+1, . . . , µd).

This formula comes from considering the variables µk+1, . . . , µd as constants, and applying
a Taylor series expansion to the remaining µ1 . . . , µk. The other base cases can be derived
from this formula by permuting the variables.

Now, let us assume the setup of Theorem 5.11. Suppose we want to find the coefficient of
(z−λ)−θ in the Laurent expansion of the zeta function (5.2), where (λ, θ) ∈ (Q>0,Z>0) is not
necessarily the real log canonical threshold. Given a matrix v ∈ Zd×d

≥0 and vector α ∈ Zd
≥0,

let m = v(−λα + τ + 1) ∈ Qd and let D(m, θ) be the set of all vectors δ ∈ Zd
≥0 such that

1. δi ≤ max(0, b1−mic) for each i,

2. m+ δ has at least θ entries which are zeros.

Note that D is a finite set. For each δ ∈ D, let δ+ be the vector whose i-th entry is annotated
with a + sign if (m+δ)i > 0. Because of the special role played by the annotated entries, we
write a vector µ ∈ Rd as (µ̂, µ̄) where µ̄ consists of coordinates corresponding to annotated
entries in δ+. Similarly, we write m = (m̂, m̄). Let d0 and d+ be the number of zero and
positive entries in the vector m+δ respectively. Lastly, let K(m, θ, δ) be the set of all vectors
k = (k0, . . . , kd) ∈ Zd+1 such that

1. ki = −1 if (m+ δ)i = 0,

2. ki ≥ 0 if (m+ δ)i 6= 0,

3. k0 + · · ·+ kd = −θ.

With these notation in place, we may now state our next theorem.

Theorem 5.13. Let τ ∈ Zd
≥0 and let the real analytic function f : [0, 1]d → R be nondegen-

erate and nonnegative. Let F be a smooth refinement of F(f) such that the strict transform
g of f under the blowup map ρF is positive over ρ−1

F [0, 1]d. Then, the coefficient cλ,t in the
asymptotic expansion∫

[0,1]d
e−nf(ω)ωτdω ≈

∑
λ

d∑
t=1

cλ,t n
−λ(log n)t−1, n→∞
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is given by the formula

cλ,t =
(−1)t

(t− 1)!

d∑
θ=t

Γ(θ−t)(λ)

(θ − t)!
dλ,θ

where
dλ,θ = (−1)θ

∑
σ∈F

∑
δ∈D(m,θ)

∑
k∈K(m,θ,δ)

C(σ, δ, k) I(σ, δ, k)

and

C(σ, δ, k) =
1

(d0 − θ)!

d∏
i=1

(vα)ki
i

∏
(m+δ)i<0

(−1)kiki! (m+ δ)
−(ki+1)
i

I(σ, δ, k) =

∫
[0,1]d+

((log g)k0g−λ)[δ+](1, µ̄) (log µ̄)k̄ µ̄m−1dµ̄.

Remark 5.14. For each σ ∈ F , v is the matrix of minimal generators of σ, α ∈ P(f) is the
vertex dual to σ, m = v(−λα+τ+1) and g(µ) = f(µv)µ−vα is the strict transform of f(ω) in
the affine chart Uσ. For each δ ∈ D(m, θ), δ+ is the vector annotated according to the positive
entries of m+ δ, µ̄,m, k̄ are subvectors of µ,m, k selected by this annotation, and d0, d+ are
the number of zero, positive entries in m + δ. In I(σ, δ, k), ((log g)k0g−λ)[δ+] is a subseries
of the power series (log g)k0g−λ. If d+ = 0, this integral equals ((log g)k0g−λ)[δ+](1).

Proof. The formula for cλ,t comes from Theorem 3.16. As for the formula for dλ,θ, we follow
the proof of Theorem 5.11 and compute the coefficient of (z − λ)−θ in∑

σ∈F

∫
[0,1]d

g(µ)−zµm(z)−1dµ

where m(z) = v(−zα + τ + 1). Because g(µ) is positive over [0, 1]d, the function g(µ)−z is
well-defined for all z ∈ R and has a power series expansion

g(µ)−z =
∑

δ∈Zd
≥0

gδ(z)µδ (5.5)

where the coefficients gδ(z) do not have poles in R. The zeta function now becomes∑
σ∈F

∑
δ∈Zd

≥0

gδ(z)

∫
[0,1]d

µm(z)+δ−1dµ

=
∑
σ∈F

∑
δ∈Zd

≥0

gδ(z)
d∏

i=1

1

(m(z) + δ)i

.
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Let m = m(λ). A vector δ ∈ Zd
≥0 contributes a (z − λ)−θ to the Laurent series if the vector

m+ δ has at least θ zero entries. Let D′ be the set of such vectors. This set is infinite, but
every element δ′ ∈ D′ can be written uniquely as a sum δ+ δ′′ where δ ∈ D(m, θ) and δ′′ is a
nonnegative integer vector satisfying δ′′i > 0 only if (m+ δ)i > 0. With these considerations,
we restrict our attention to

∑
σ∈F

∑
δ′∈D′

gδ′(z)
d∏

i=1

1

(m(z) + δ′)i

=
∑
σ∈F

∑
δ∈D(m,θ)

(−1)d0

(z − λ)d0

∑
δ′′∈Zd+

≥0

gδ+δ′′(z)
∏

(m+δ)i>0

(m(z) + δ + δ′′)−1
i

∏
(m+δ)i=0

(vα)i

∏
(m+δ)i<0

(m(z) + δ)i

=
∑
σ∈F

∑
δ∈D(m,θ)

(−1)d0

(z − λ)d0

∫
[0,1]d+

g−z[δ+](1, µ̄) µ̄m(z)−1dµ̄∏
(m+δ)i=0

(vα)i

∏
(m+δ)i<0

(m(z) + δ)i

. (5.6)

The last equality is a consequence of

g−z[δ+](1, µ̄) =
∑

δ′′∈Zd+
≥0

gδ+δ′′(z) µ̄δ+δ′′

which we derive from the definition (5.5). To find the coefficient of (z−λ)−θ in each summand
of (5.6), we need to find the coefficient of (z − λ)d0−θ in the function

h(z) =

∫
[0,1]d+

g−z[δ+](1, µ̄) µ̄m(z)−1dµ̄∏
(m+δ)i<0

(m(z) + δ)i

.

The Taylor formula for this coefficient is

1

(d0 − θ)!

∂d0−θ

∂zd0−θ
h(λ)

and we apply to h(z) the product rule for derivatives. Observe that we can bring the partial
differential operator under the integral operator so

∂

∂z

∫
[0,1]d+

g−z[δ+](1, µ̄) µ̄m(z)−1dµ̄ =

∫
[0,1]d+

∂

∂z
g−z[δ+](1, µ̄) µ̄m(z)−1dµ̄.
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It is also not difficult to show that

∂

∂z
g−z[δ+](1, µ̄) = (−(log g)g−z)[δ+](1, µ̄),

∂

∂z
µ

m(z)i−1
i = (−vα)i(log µi)µ

m(z)i−1
i ,

∂

∂z

1

(m(z) + δ)l
i

= (−vα)i(−l)
1

(m(z) + δ)l+1
i

, l ≥ 1.

Combining these ideas gives us the desired formula.

Example 5.15. Let us revisit Example 1.18 and compute higher order asymptotics of the
integral (1.28), namely the coefficients cλ,t in∫

[0,1]2
e−NK(u,s) duds ≈

∑
λ,t

cλ,tN
−λ(logN)t−1, N →∞

where

K(u, s) =
1

2
log

1

1 + us
+

1

2
log

1

1− us
= −1

2
log(1− u2s2).

We could write computer software that implements the algorithm in Theorem 5.13. However,
for this example, it would be more instructive if we computed the asymptotics by following
the proof of the theorem instead.

First, we want to find the poles of the zeta function

ζ(z) =

∫
[0,1]2

K(u, s)−z duds.

After observing that

K(u, s) =
u2s2

2

(
1 +

u2s2

2
+
u4s4

3
+ · · ·

)
,

let us compute the power series expansion of K(u, s)−z. The first term is (u2s2/2)−z. Using
Newton’s generalized binomial theorem, every other term in the expansion is of the form(

u2s2

2

)−z (−z
α1

)(
α1

α2

)
· · ·
(
αk−1

αk

)(
u2s2

2

)α1−α2
(
u4s4

3

)α2−α3

· · ·
(
u2ks2k

k + 1

)αk

for some k > 0, some integer vector α ∈ Zk such that α1 ≥ · · · ≥ αk > 0, and where(
−z
α1

)
=

(−z)(−z − 1) · · · (−z − α1 + 1)

α1!
.
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This means that for δ > 0, the coefficient of the term (us)−2z+2δ in this expansion is

hδ(z) = 2z
∑
α` δ

(−z
α1

)(
α1

α2

)
· · ·
(

αk−1

αk

)
2α1−α23α2−α3 · · · (k + 1)αk

where we sum over all decreasing partitions α of δ, i.e. α1 ≥ · · · ≥ αk > 0 and α1+· · ·+αk = δ
for some k > 0. Integrating this term over the domain [0, 1]2, we get the contribution

hδ(z)

4

(
z − δ + 1

2

)−2

to the zeta function ζ(z). Now, let λ = (δ + 1)/2. It follows that the Laurent coefficient of
(z − λ)−2 is dλ,2 = hδ(λ)/4 while that of (z − λ)−1 is dλ,1 = h′δ(λ)/4. Explicitly,

h′δ(z) = 2z
∑
α` δ

(
1

z
+

1

z + 1
+ · · ·+ 1

z + α1 − 1
+

1

log 2

) (−z
α1

)(
α1

α2

)
· · ·
(

αk−1

αk

)
2α1−α23α2−α3 · · · (k + 1)αk

.

Finally, by Theorem 3.16, we have the asymptotic coefficients

cλ,2 = Γ(λ) dλ,2,

cλ,1 = −Γ(λ) dλ,1 − Γ(1)(λ) dλ,2.

This gives us the following closed-form expressions

cλ,2 = 2λ−2 Γ(λ)
∑

α` 2λ−1

(−λ
α1

)(
α1

α2

)
· · ·
(

αk−1

αk

)
2α1−α23α2−α3 · · · (k + 1)αk

cλ,1 = −2λ−2 Γ(λ)
∑

α` 2λ−1

(−λ
α1

)(
α1

α2

)
· · ·
(

αk−1

αk

)
2α1−α23α2−α3 · · · (k + 1)αk

H(2λ+ 2α1 − 2)

where

H(k) =


1

log 2
− γ + 2

(
1

2
+

1

4
+ · · ·+ 1

k

)
if k even,

1

log 2
− γ + 2

(
1

1
+

1

3
+ · · ·+ 1

k
− log 2

)
if k odd.

and γ is the Euler-Mascheroni constant

γ = lim
n→∞

(
n∑

k=1

1

k
− log n

)
≈ 0.5772156649.
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The above formulas allow us to compute the first few values of cλ,t easily:

c 1
2
,2 =

√
π

8
, c 1

2
,1 = −

√
π

8

(
1

log 2
− 2 log 2− γ

)
,

c1,2 = −1

4
, c1,1 =

1

4

(
1

log 2
+ 1− γ

)
,

c 3
2
,2 = −

√
2π

128
, c 3

2
,1 =

√
2π

128

(
1

log 2
− 2 log 2− 10

3
− γ

)
,

c2,2 = 0, c2,1 = − 1

24
.

Using these coefficients, we can get better approximations of the singular marginal likelihood
integral (1.28) when the sample size N is large.

In this chapter, we investigated algebraic methods for computing higher order asymptotics
of Laplace integrals. Our contributions come in two flavors. The first flavor consists of sum,
product and chain rules satisfied by leading coefficients of the asymptotics. These new results
parallel those described in Section 4.1.3 for computing RLCTs of ideals. The second flavor
is concerned with the asymptotics of nondegenerate functions. We gave explicit formulas for
leading coefficients in Theorem 5.11 and for higher order coefficients in Theorem 5.13. We
ended the chapter with an example where we computed such coefficients for the marginal
likelihood integral of a discrete statistical model.
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