What is Singular Learning Theory?

Shaowei Lin (UC Berkeley)

16 April 2012 University of Washington

Schizophrenic Patients

- Model Selection
- Marginal Likelihood
- Exact Evaluation
- Asymptotic Approx
- Sumio Watanabe

Integral Asymtotics

Singular Learning

Algebraic Geometry

Applications

Statistical Motivation: 132 Schizophrenic Patients

Model Selection

Schizophrenic Patients

- Model Selection
- Marginal Likelihood
- Exact Evaluation
- Asymptotic Approx
- Sumio Watanabe

Integral Asymtotics

Singular Learning

Algebraic Geometry

Applications

Evans-Gilula-Guttman(1989) studied schizophrenic patients for connections between recovery time (in years Y) and frequency of visits by relatives.

	$2 \le Y < 10$	$10 \le Y < 20$	$20 \leq Y$	Totals
Regularly	43	16	3	<i>62</i>
Rarely	6	11	10	27
Never	9	18	16	43
Totals	58	45	29	132

They wanted to find out if the data can be explained by the *independence model* or a *naïve Bayes model* with two hidden states (e.g. male and female).

Model Selection

Schizophrenic Patients

- Model Selection
- Marginal Likelihood
- Exact Evaluation
- Asymptotic Approx
- Sumio Watanabe

Integral Asymtotics

Singular Learning

Algebraic Geometry

Applications

Independence Model $\mathcal{M}_{\mathbf{l}}$

parametrized by $(a,b) \in \Delta_2 \times \Delta_2$.

Naïve Bayes Model \mathcal{M}_{NB} :

parametrized by $(t, a, b, c, d) \in \Delta_1 \times \Delta_2 \times \Delta_2 \times \Delta_2 \times \Delta_2$.

Because \mathcal{M}_{I} is a submodel of \mathcal{M}_{NB} , model selection using *maximum likelihood* will always choose \mathcal{M}_{NB} .

We do model selection using the *marginal likelihood* instead.

Marginal Likelihood

Schizophrenic Patients

- Model Selection
- Marginal Likelihood
- Exact Evaluation
- Asymptotic Approx
- Sumio Watanabe

Integral Asymtotics

Singular Learning

Algebraic Geometry

Applications

$$Z_N = \int_{\Omega} \prod_{i,j} p_{ij}(\omega)^{U_{ij}} \varphi(\omega) d\omega$$

 U_{ij}, N sample state frequencies, sample size ω, Ω model parameters, parameter space $p_{ij}(\omega)$ model state probabilities $\varphi(\omega)$ prior on parameter space

Generally, evaluating such integrals accurately is a difficult problem. Existing methods can be divided into three broad classes:

- 1. Exact evaluation by closed form formulas
- 2. Numerical estimation by Monte Carlo techniques
- 3. Asymptotic approximation by analyzing large samples

Exact Evaluation

Schizophrenic Patients

- Model Selection
- Marginal Likelihood
- Exact Evaluation
- Asymptotic Approx
- Sumio Watanabe

Integral Asymtotics

Singular Learning

Algebraic Geometry

Applications

$$Z_N = \int_{\Omega} \prod_{i,j} p_{ij}(\omega)^{U_{ij}} \varphi(\omega) d\omega$$

In special cases, we can find *closed form formulas* for the integral.

Lin-Sturmfels-Xu(2009) computed this integral for \mathcal{M}_{NB} exactly (not a floating point approx) assuming the uniform prior $\varphi(\omega)=1$.

It is the rational number with numerator

 $278019488531063389120643600324989329103876140805\\285242839582092569357265886675322845874097528033\\99493069713103633199906939405711180837568853737$

and denominator

 $\begin{array}{c} 12288402873591935400678094796599848745442833177572204\\ 50448819979286456995185542195946815073112429169997801\\ 33503900169921912167352239204153786645029153951176422\\ 43298328046163472261962028461650432024356339706541132\\ 34375318471880274818667657423749120000000000000000.\end{array}$

Asymptotic Approximation

Schizophrenic Patients

- Model Selection
- Marginal Likelihood
- Exact Evaluation
- Asymptotic Approx
- Sumio Watanabe

Integral Asymtotics

Singular Learning

Algebraic Geometry

Applications

$$Z_N = \int_{\Omega} \prod_{i,j} p_{ij}(\omega)^{U_{ij}} \varphi(\omega) d\omega$$

Study the behavior of the integral as sample size N grows large.

$$U = Nq, \quad q = \frac{1}{132} \begin{pmatrix} 43 & 16 & 3 \\ 6 & 11 & 10 \\ 9 & 18 & 16 \end{pmatrix}, \quad q = \frac{1}{132} \begin{pmatrix} 43.00 & 16.00 & 3.00 \\ 5.98 & 11.12 & 9.90 \\ 9.02 & 17.88 & 16.10 \end{pmatrix}$$

Different asymptotic directions ($true\ distributions$) q for the data may give different asymptotic approximations.

Bayesian Information Criterion

$$-\log Z_N pprox \mathrm{BIC} = -\sum_{i,j} U_{ij} \log q_{ij} + rac{d}{2} \log N$$

where d is the dimension of the parameter space.

The BIC holds for *smooth* models (e.g. multinomial, exponential) but generalization to *singular* models (e.g. hidden variables) unknown.

Sumio Watanabe

Schizophrenic Patients

- Model Selection
- Marginal Likelihood
- Exact Evaluation
- Asymptotic Approx
- Sumio Watanabe

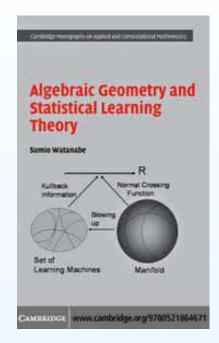
Integral Asymtotics

Singular Learning

Algebraic Geometry

Applications

Sumio Watanabe



Heisuke Hironaka

In 1998, Sumio Watanabe discovered how to study the asymptotic behavior of singular models. His insight was to use a deep result in algebraic geometry known as Hironaka's Resolution of Singularities.

Heisuke Hironaka proved this celebrated result in 1964. His accomplishment won him the Field's Medal in 1970.

Asymptotic Approximation

Schizophrenic Patients

- Model Selection
- Marginal Likelihood
- Exact Evaluation
- Asymptotic Approx
- Sumio Watanabe

Integral Asymtotics

Singular Learning

Algebraic Geometry

Applications

$$Z_N = \int_{\Omega} \prod_{i,j} p_{ij}(\omega)^{U_{ij}} \varphi(\omega) d\omega$$

Using Watanabe's Singular Learning Theory,

$$-\log Z_N \approx -\sum_{i,j} U_{ij} \log q_{ij} + \lambda_q \log N - (\theta_q - 1) \log \log N$$

where the *learning coefficient* (λ_q, θ_q) is given by

$$(\lambda_q, \theta_q) = \begin{cases} (5/2, 1) & \text{if } \operatorname{rank} q = 1, \\ (7/2, 1) & \text{if } \operatorname{rank} q = 2, \ q \notin \left[\begin{smallmatrix} 0 & \times \\ \times & \times \end{smallmatrix} \right] \cup \left[\begin{smallmatrix} 0 & \times \\ \times & 0 \end{smallmatrix} \right], \\ (4, 1) & \text{if } \operatorname{rank} q = 2, \ q \in \left[\begin{smallmatrix} 0 & \times \\ \times & \times \end{smallmatrix} \right] \setminus \left[\begin{smallmatrix} 0 & \times \\ \times & 0 \end{smallmatrix} \right], \\ (9/2, 1) & \text{if } \operatorname{rank} q = 2, \ q \in \left[\begin{smallmatrix} 0 & \times \\ \times & 0 \end{smallmatrix} \right]. \end{cases}$$

Here,
$$q \in \left[\begin{smallmatrix} 0 & \times \\ \times & \times \end{smallmatrix} \right]$$
 if for some $i,j,\ q_{ii}=0$ and $q_{ij}\ q_{ji}\ q_{jj} \neq 0$, $q \in \left[\begin{smallmatrix} 0 & \times \\ \times & 0 \end{smallmatrix} \right]$ if for some $i,j,\ q_{ii}=q_{jj}=0$ and $q_{ij}\ q_{ji} \neq 0$.

Schizophrenic Patients

Integral Asymtotics

- Laplace
- Geometry
- Monomials
- Desingularization
- Algorithm
- Higher Order

Singular Learning

Algebraic Geometry

Applications

Mathematical Technique: Integral Asymptotics

Integral Asymptotics

Schizophrenic Patients

Integral Asymtotics

- Laplace
- Geometry
- Monomials
- Desingularization
- Algorithm
- Higher Order

Singular Learning

Algebraic Geometry

Applications

For large N, approximate

$$Z(N) = \int_{[0,1]^2} (1 - x^2 y^2)^{N/2} dx dy.$$

• Write Z(N) as $\int e^{-Nf(x,y)} dx dy$ where

$$f(x,y) = -\frac{1}{2}\log(1 - x^2y^2).$$

Can we use the Gaussian integral

$$\int_{\mathbb{R}^d} e^{-\frac{N}{2}(\omega_1^2 + \dots + \omega_d^2)} d\omega = \left(\frac{2\pi}{N}\right)^{d/2}$$

by finding a suitable change of coordinates for x, y?

Laplace Approximation

Schizophrenic Patients

Integral Asymtotics

- Laplace
- Geometry
- Monomials
- Desingularization
- Algorithm
- Higher Order

Singular Learning

Algebraic Geometry

Applications

 Ω small nbhd of origin, $f:\Omega\to\mathbb{R}$ analytic function with unique minimum f(0) at origin, $\partial^2 f$ Hessian of f. If $\det\partial^2 f(0)\neq 0$,

$$Z(N) = \int_{\Omega} e^{-Nf(\omega)} d\omega \approx e^{-Nf(0)} \cdot \sqrt{\frac{(2\pi)^d}{\det \partial^2 f(0)}} \cdot N^{-d/2}.$$

e.g. Bayesian Information Criterion

$$-\log Z_N pprox \mathrm{BIC} = \left(-\sum_{i,j} U_{ij} \log q_{ij}^*\right) + \frac{d}{2} \log N$$

e.g. Stirling's approximation

$$N! = N^{N+1} \int_0^\infty e^{-N(x-\log x)} dx \approx N^{N+1} e^{-N} \sqrt{\frac{2\pi}{N}}$$

Geometry of the Integral

Schizophrenic Patients

Integral Asymtotics

- Laplace
- Geometry
- Monomials
- Desingularization
- Algorithm
- Higher Order

Singular Learning

Algebraic Geometry

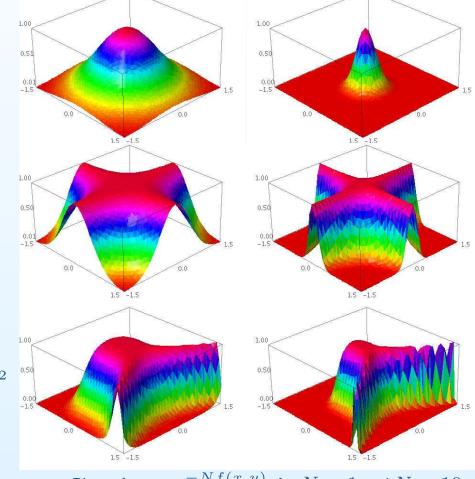
Applications

Because $\det \partial^2 f(0) = 0$ in our example, we cannot apply Laplace approximation. More important to study *minimas* of f.

$$f(x,y) = x^2 + y^2$$

$$f(x,y) = (xy)^2$$

$$f(x,y) = (y^2 - x^3)^2$$



Plots of $\,z=e^{-Nf(x,y)}\,$ for N=1 and N=10

Monomial Functions

Schizophrenic Patients

Integral Asymtotics

- Laplace
- Geometry
- Monomials
- Desingularization
- Algorithm
- Higher Order

Singular Learning

Algebraic Geometry

Applications

Notation: $\omega^{\kappa} = \omega_1^{\kappa_1} \cdots \omega_d^{\kappa_d}$.

Asymptotic theory of Arnol'd, Guseĭn-Zade and Varchenko (1974).

Theorem (AGV). Given $\kappa, \tau \in \mathbb{Z}^d_{\geq 0}$,

$$Z(N) = \int_{\Omega} e^{-N\omega^{\kappa}} \omega^{\tau} d\omega \approx CN^{-\lambda} (\log N)^{\theta-1}$$

where $\Omega \subset \mathbb{R}^d$ is a compact nbhd of the origin, C is a constant,

$$\lambda = \min_{i} \frac{\tau_i + 1}{\kappa_i},$$

 $\theta =$ number of times minimum is attained.

Resolution of Singularities

Schizophrenic Patients

Integral Asymtotics

- Laplace
- Geometry
- Monomials
- Desingularization
- Algorithm
- Higher Order

Singular Learning

Algebraic Geometry

Applications

Let $\Omega \subset \mathbb{R}^d$ and $f:\Omega \to \mathbb{R}$ analytic function.

- ullet We say $ho:U o\Omega$ desingularizes f if
 - 1. U is a d-dimensional real analytic manifold covered by patches U_1, \ldots, U_s (\simeq subsets of \mathbb{R}^d).
 - 2. For each restriction $\rho:U_i\to\Omega,\,\mu\mapsto\omega,$

$$f \circ \rho(\mu) = a(\mu)\mu^{\kappa}, \quad \det \rho'(\mu) = b(\mu)\mu^{\tau}$$

where $a(\mu)$ and $b(\mu)$ are nonzero on U_i .

- Hironaka (1964) proved that desingularizations always exist.
- The preimage (*transform*) $\{\mu: f \circ \rho(\mu) = 0\}$ of the zero-set (*variety*) $\{\omega: f(\omega) = 0\}$ has *simple normal crossings*.

Algorithm for Computing Integral Asymptotics

Schizophrenic Patients

Integral Asymtotics

- Laplace
- Geometry
- Monomials
- Desingularization
- Algorithm
- Higher Order

Singular Learning

Algebraic Geometry

Applications

 $Z(N) = \int_{\Omega} e^{-Nf(\omega)} \varphi(\omega) d\omega \approx e^{-Nf^*} \cdot CN^{-\lambda} (\log N)^{\theta-1}$

Input:

Semialgebraic set $\Omega = \{\omega : g_1(\omega) \geq 0, \dots, g_l(\omega) \geq 0\} \subset \mathbb{R}^d$ Analytic functions $f, \varphi : \Omega \to \mathbb{R}$

Output:

Asymptotic coefficients f^*, λ, θ

- 1. Find minimum f^* of f over Ω .
- 2. Find a desingularization ρ for product $(f f^*)g_1 \cdots g_l \varphi$.
- 3. Use AGV Theorem to find coefficients λ_i , θ_i on each patch U_i .
- 4. $\lambda = \min\{\lambda_i\}, \ \theta = \max\{\theta_i : \lambda_i = \lambda\}.$

Higher Order Asymptotics

Schizophrenic Patients

Integral Asymtotics

- Laplace
- Geometry
- Monomials
- Desingularization
- Algorithm
- Higher Order

Singular Learning

Algebraic Geometry

Applications

After desingularizing $f(x,y) = -\frac{1}{2}\log(1-x^2y^2)$, we were able to compute higher order asymptotics of Z(N).

$$\sqrt{\frac{\pi}{8}} N^{-\frac{1}{2}} \log N \qquad -\sqrt{\frac{\pi}{8}} \left(\frac{1}{\log 2} - 2\log 2 - \gamma\right) N^{-\frac{1}{2}} \\
-\frac{1}{4} N^{-1} \log N \qquad +\frac{1}{4} \left(\frac{1}{\log 2} + 1 - \gamma\right) N^{-1} \\
-\frac{\sqrt{2\pi}}{128} N^{-\frac{3}{2}} \log N \qquad +\frac{\sqrt{2\pi}}{128} \left(\frac{1}{\log 2} - 2\log 2 - \frac{10}{3} - \gamma\right) N^{-\frac{3}{2}} \\
-\frac{1}{24} N^{-2} + \cdots$$

Euler-Mascheroni constant

$$\gamma = \lim_{n \to \infty} \left(\sum_{k=1}^{n} \frac{1}{k} - \log n \right) \approx 0.5772156649.$$

Schizophrenic Patients **Integral Asymtotics** Singular Learning Statistical Model Learning Coefficient Geometry Standard Form Bayes Generalization Questions **Singular Learning Theory** Algebraic Geometry Applications

Statistical Model

Schizophrenic Patients

Integral Asymtotics

Singular Learning

- Statistical Model
- Learning Coefficient
- Geometry
- Standard Form
- Bayes Generalization
- Questions

Algebraic Geometry

Applications

X random variable with state space \mathcal{X} (e.g. $\{1,2,\ldots,k\},\mathbb{R}^k$) space of probability distributions on \mathcal{X}

 $\mathcal{M} \subset \Delta_{\mathcal{X}}$ statistical model, image of $p:\Omega \to \Delta_{\mathcal{X}}$

 Ω parameter space

 $p(x|\omega)dx$ distribution at $\omega \in \Omega$

 $\varphi(\omega)d\omega$ prior distribution on Ω

Given samples X_1, \ldots, X_N of X, define *marginal likelihood*

$$Z_N = \int_{\Omega} \prod_{i=1}^N p(X_i|\omega) \, \varphi(\omega) d\omega.$$

Given $q \in \Delta_{\mathcal{X}}$, define *Kullback-Leibler function*

$$K(\omega) = \int_{\mathcal{X}} q(x) \log \frac{q(x)}{p(x|\omega)} dx.$$

Learning Coefficient

Schizophrenic Patients

Integral Asymtotics

Singular Learning

- Statistical Model
- Learning Coefficient
- Geometry
- Standard Form
- Bayes Generalization
- Questions

Algebraic Geometry

Applications

Suppose samples X_1, \ldots, X_N are drawn from distribution $q \in \mathcal{M}$. Define *empirical entropy* $S_N = -\frac{1}{N} \sum_{i=1}^N \log q(X_i)$.

Convergence of stochastic complexity (Watanabe)

The stochastic complexity has the asymptotic expansion

$$-\log Z_N = NS_N + \lambda_q \log N - (\theta_q - 1) \log \log N + R_N$$

where R_N converges in law to a random variable. Moreover, λ_q, θ_q are asymptotic coefficients of the deterministic integral

$$Z(N) = \int_{\Omega} e^{-NK(\omega)} \varphi(\omega) d\omega \approx CN^{-\lambda_q} (\log N)^{\theta_q - 1}.$$

Think of this as a *Bayesian Information Criterion* for singular models. (λ_q, θ_q) is the *learning coefficient* of the model \mathcal{M} at q.

Geometry of Singular Models

Schizophrenic Patients

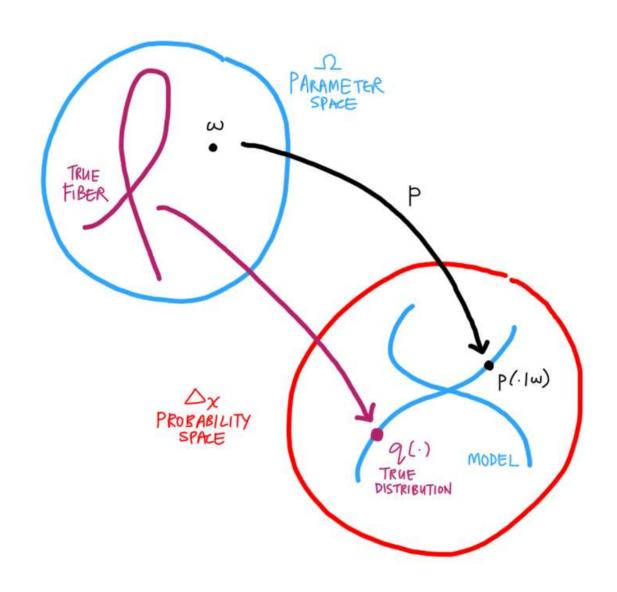
Integral Asymtotics

Singular Learning

- Statistical Model
- Learning Coefficient
- Geometry
- Standard Form
- Bayes Generalization
- Questions

Algebraic Geometry

Applications



Standard Form of Log Likelihood Ratio

Schizophrenic Patients

Integral Asymtotics

Singular Learning

- Statistical Model
- Learning Coefficient
- Geometry
- Standard Form
- Bayes Generalization
- Questions

Algebraic Geometry

Applications

Define *log likelihood ratio*. Note that its expectation is $K(\omega)$.

$$K_N(\omega) = \frac{1}{N} \sum_{i=1}^N \log \frac{q(X_i)}{p(X_i|\omega)}.$$

Standard Form of Log Likelihood Ratio (Watanabe)

If $\rho:U\to\Omega$ desingularizes $K(\omega)$, then on each patch U_i ,

$$K_N \circ \rho(\mu) = \mu^{2\kappa} - \frac{1}{\sqrt{N}} \mu^{\kappa} \xi_N(\mu)$$

where $\xi_N(\mu)$ converges in law to a Gaussian process on U.

Think of this as a Central Limit Theorem for singular models.

Bayes Generalization Error

Schizophrenic Patients

Integral Asymtotics

Singular Learning

- Statistical Model
- Learning Coefficient
- Geometry
- Standard Form
- Bayes Generalization
- Questions

Algebraic Geometry

Applications

Given samples $D=\{X_1,\ldots,X_N\}$, define $p(\omega|D)=\text{posterior distribution}=\frac{1}{Z_N}\varphi(\omega)\prod_{i=1}^N p(X_i|\omega)$

$$p(x|D) = \text{predictive distribution} = \int_{\Omega} p(x|\omega) p(\omega|D) d\omega$$

The Bayes Generalization Error B_N is the Kullback-Leibler distance from the true distribution q(x) to the predictive distribution p(x|D).

$$B_N = \int_{\mathcal{X}} q(x) \log \frac{q(x)}{p(x|D)} dx$$

Let $\hat{\omega}$ denote the MLE. Asymptotically, B_N is equivalent to

Akaike Information Criterion

$$AIC = -\sum_{i=1}^{N} \log p(X_i|\hat{\omega}) + d$$

Akaike Information Criterion for singular models

$$AIC = -\sum_{i=1}^{N} \log p(X_i|\hat{\omega}) + 2\nu_q$$

where ν_q is the *singular fluctuation*.

Bayes Generalization Error

Schizophrenic Patients

Integral Asymtotics

Singular Learning

- Statistical Model
- Learning Coefficient
- Geometry
- Standard Form
- Bayes Generalization
- Questions

Algebraic Geometry

Applications

Let \mathbb{E}_X denote expectation over the data distribution. Let \mathbb{E}_w denote expectation over the posterior distribution $p(\omega|D)$.

Given a function $f(\omega)$, we can numerically estimate:

 $\mathbb{E}_w[f(\omega)]$ by sampling from $p(\omega|D)$ using MCMC methods, $\mathbb{E}_X[f(X)]$ by averaging $f(X_i)$ over the data X_1, \ldots, X_N .

Numerical estimates of B_N :

Deviance Information Criterion

$$\mathsf{DIC} = \mathbb{E}_X[\log p(X|\mathbb{E}_{\omega}[\omega])] - 2 \mathbb{E}_{\omega}[\mathbb{E}_X[\log p(X|\omega)]]$$

Widely Applicable Information Criterion for singular models

WAIC =
$$\mathbb{E}_X[\log \mathbb{E}_{\omega}[p(X|\omega)]] - 2 \mathbb{E}_{\omega}[\mathbb{E}_X[\log p(X|\omega)]]$$

Mathematical Questions in Singular Learning

Schizophrenic Patients

Integral Asymtotics

Singular Learning

- Statistical Model
- Learning Coefficient
- Geometry
- Standard Form
- Bayes Generalization
- Questions

Algebraic Geometry

Applications

For each distribution q in the model \mathcal{M} ,

- 1. Study the geometrical structure of the fiber $p^{-1}(q)$.
- 2. Study the asymptotics of the integral

$$Z(N) = \int_{\Omega} e^{-NK(\omega)} \varphi(\omega) d\omega$$

and compute the learning coefficient (λ_q, θ_q) .

3. Desingularize the Kullback-Leibler function $K(\omega)$.

Schizophrenic Patients

Integral Asymtotics

Singular Learning

Algebraic Geometry

- Ideals & Varieties
- Gröbner Bases
- Fiber Ideals
- RLCTs
- Newton Polyhedra
- Upper Bounds

Applications

Computations: Algebraic Geometry

Ideals & Varieties

Schizophrenic Patients

Integral Asymtotics

Singular Learning

Algebraic Geometry

- Ideals & Varieties
- Gröbner Bases
- Fiber Ideals
- RLCTs
- Newton Polyhedra
- Upper Bounds

Applications

Polynomial system (*ideal*) $\langle y - x^2, y \rangle \subset \mathbb{R}[x, y]$ Solution set (*variety*) $V = \{(0, 0)\} \subset \mathbb{R}^2$

• If $y-x^2$ and y vanish on V, so do all polynomials of the form

$$p(x,y) = (y - x^2) p_1(x,y) + (y) p_2(x,y).$$

This infinite set of polynomials is the *ideal* $I = \langle y - x^2, y \rangle$.

- Vector spaces: generated by addition, scalar multiplication.
 Ideals: generated by addition, polynomial multiplication.
 Different sets of polynomials can generate the same ideal.
- Given subset $I \subset \mathcal{R} := \mathbb{R}[x_1, \dots, x_d]$, define the *variety* $\mathcal{V}(I) = \{x \in \mathbb{R}^d : f(x) = 0 \text{ for all } f \in I\}.$

Given subset $V \subset \mathbb{R}^d$, define the *ideal*

$$\mathcal{I}(V) = \{ f \in \mathcal{R} : f(x) = 0 \text{ for all } x \in V \}.$$

Gröbner Bases

Schizophrenic Patients

Integral Asymtotics

Singular Learning

Algebraic Geometry

- Ideals & Varieties
- Gröbner Bases
- Fiber Ideals
- RLCTs
- Newton Polyhedra
- Upper Bounds

Applications

- Every system of linear equations has a row echelon form, which depends on the ordering of the coordinates and is computed using Gaussian elimination.
- Every system of polynomial equations has a *Gröbner basis*, which depends on the ordering of the monomials and is computed using *Buchberger's algorithm*.
- Determine ideal membership, dimension, degree, solutions, irreducible components, elimination of variables, etc.
 Also essential in resolution of singularities.
- Textbook:

"Ideals, Varieties, and Algorithms," Cox-Little-O'Shea (1997)

Software:

Macaulay2, Singular, Maple, etc.

Geometry of Singular Models

Schizophrenic Patients

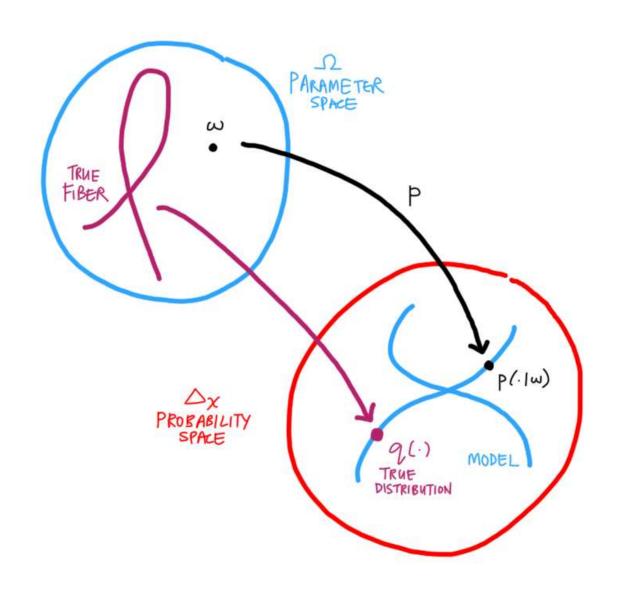
Integral Asymtotics

Singular Learning

Algebraic Geometry

- Ideals & Varieties
- Gröbner Bases
- Fiber Ideals
- RLCTs
- Newton Polyhedra
- Upper Bounds

Applications



Fiber Ideals

Schizophrenic Patients

Integral Asymtotics

Singular Learning

Algebraic Geometry

- Ideals & Varieties
- Gröbner Bases
- Fiber Ideals
- RLCTs
- Newton Polyhedra
- Upper Bounds

Applications

Discrete Models. State probabilities parametrized by

$$p(\omega) \in \Delta_{k-1}$$
.

Given a true distribution \hat{p} that lies in the model, define the fiber ideal of the model at \hat{p} to be

$$I_{\hat{p}} = \langle p_1(\omega) - \hat{p}_1, \dots, p_k(\omega) - \hat{p}_k \rangle.$$

Gaussian Models. Mean and covariance parametrized by

$$\mu(\omega) \in \mathbb{R}^k, \quad \Sigma(\omega) \in \mathbb{R}^{k \times k}_{\succ 0}.$$

Given a true distribution $\mathcal{N}(\hat{\mu}, \hat{\Sigma})$ that lies in the model, define the fiber ideal of the model at $(\hat{\mu}, \hat{\Sigma})$ to be

$$I_{\hat{\mu},\hat{\Sigma}} = \langle \mu_1(\omega) - \hat{\mu}_1, \dots, \mu_k(\omega) - \hat{\mu}_k,$$

$$\Sigma_{11}(\omega) - \hat{\Sigma}_{11}, \dots, \Sigma_{kk}(\omega) - \hat{\Sigma}_{kk} \rangle.$$

Real Log Canonical Thresholds

Schizophrenic Patients

Integral Asymtotics

Singular Learning

Algebraic Geometry

- Ideals & Varieties
- Gröbner Bases
- Fiber Ideals
- RLCTs
- Newton Polyhedra
- Upper Bounds

Applications

Given ideal $I=\langle f_1(\omega),\ldots,f_k(\omega)\rangle\subset\mathbb{R}[\omega_1,\ldots,\omega_d],$ polynomial $\varphi(\omega)\in\mathbb{R}[\omega_1,\ldots,\omega_d],$ semialgebraic set $\Omega\subset\mathbb{R}^d$ with boundary eqns $g_1,\ldots,g_l.$

The *real log canonical threshold* (λ, θ) of I at $x \in \Omega$ satisfies

$$\int_{\Omega_x} e^{-N(f_1^2 + \dots + f_k^2)} \varphi(\omega) d\omega \approx CN^{-\lambda} (\log N)^{\theta - 1}$$

for suff small nbhd Ω_x of x in Ω . Denote $(\lambda, \theta) = \mathrm{RLCT}_{\Omega_x}(I; \varphi)$.

Properties

- Definition is independent of choice of generators f_1, \ldots, f_k .
- λ positive *rational* number, θ positive *integer*.
- Order the (λ, θ) by the value of $N^{\lambda} (\log N)^{-\theta}$ for large N.
- Depends on structure of boundary $\partial \Omega$ if $x \in \partial \Omega$.

Real Log Canonical Thresholds

Schizophrenic Patients

Integral Asymtotics

Singular Learning

Algebraic Geometry

- Ideals & Varieties
- Gröbner Bases
- Fiber Ideals
- RLCTs
- Newton Polyhedra
- Upper Bounds

Applications

Suppose we have a discrete or Gaussian model with parameter space Ω and prior $\varphi(\omega)$, and a true distribution q in the model.

Theorem (L.)

The learning coefficient (λ_q, θ_q) is given by

$$(2\lambda_q, \theta_q) = \min_{x \in \mathcal{V}(I_q)} RLCT_{\Omega_x}(I_q; \varphi)$$

where I_q is the fiber ideal at q and $\mathcal{V}(I_q) \subset \Omega$ is the fiber over q.

Algorithm for Computing $(\lambda, \theta) = \mathrm{RLCT}_{\Omega_x}(I; \varphi)$

- 1. Shift the origin to x.
- 2. Find monomialization $\rho: U \to \Omega$ for $I, g_1, \ldots, g_l, \varphi$. (Transform of I is generated by monomials on each patch U_i)
- 3. Find RLCT (λ_i, θ_i) on each patch U_i using Newton polyhedra.
- 4. $\lambda = \min\{\lambda_i\}, \ \theta = \max\{\theta_i : \lambda_i = \lambda\}.$

Newton Polyhedra

Schizophrenic Patients

Integral Asymtotics

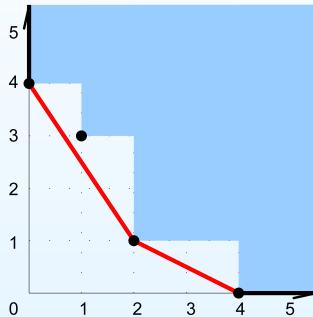
Singular Learning

Algebraic Geometry

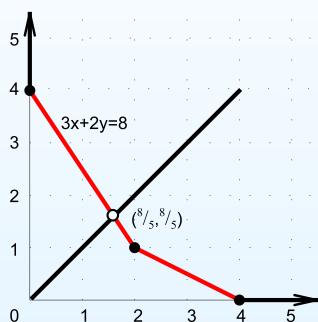
- Ideals & Varieties
- Gröbner Bases
- Fiber Ideals
- RLCTs
- Newton Polyhedra
- Upper Bounds

Applications

e.g. Let $I=\langle x^4,x^2y,xy^3,y^4\rangle$ and $\tau=(0,0)$.



au-distance



The au-distance is $l_{ au}=8/5$ and the multiplicity is $heta_{ au}=1$.

Newton Polyhedra

Schizophrenic Patients

Integral Asymtotics

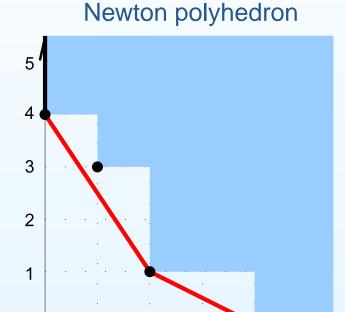
Singular Learning

Algebraic Geometry

- Ideals & Varieties
- Gröbner Bases
- Fiber Ideals
- RLCTs
- Newton Polyhedra
- Upper Bounds

Applications

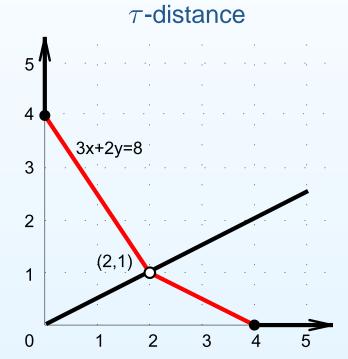
e.g. Let $I=\langle x^4,x^2y,xy^3,y^4\rangle$ and $\tau=(1,0)$.



2

0

3



The au-distance is $l_{ au}=1$ and the multiplicity is $\theta_{ au}=2$.

Newton Polyhedra

Schizophrenic Patients

Integral Asymtotics

Singular Learning

Algebraic Geometry

- Ideals & Varieties
- Gröbner Bases
- Fiber Ideals
- RLCTs
- Newton Polyhedra
- Upper Bounds

Applications

Given an ideal $I \subset \mathbb{R}[\omega_1, \dots, \omega_d]$,

- 1. Plot $lpha \in \mathbb{R}^d$ for each monomial ω^lpha appearing in some $f \in I$.
- 2. Take the convex hull $\mathcal{P}(I)$ of all plotted points.

This convex hull $\mathcal{P}(I)$ is the *Newton polyhedron* of I.

Given a vector $au \in \mathbb{Z}^d_{\geq 0}$, define

- 1. τ -distance $l_{\tau} = \min\{t : t(\tau_1 + 1, \dots, \tau_d + 1) \in \mathcal{P}(I)\}.$
- 2. multiplicity $\theta_{\tau} = \text{codim of face of } \mathcal{P}(I)$ at this intersection.

Upper Bounds

Schizophrenic Patients

Integral Asymtotics

Singular Learning

Algebraic Geometry

- Ideals & Varieties
- Gröbner Bases
- Fiber Ideals
- RLCTs
- Newton Polyhedra
- Upper Bounds

Applications

Let $\Omega \subset \mathbb{R}^d$ be a sufficiently small nbhd of the origin.

Proposition (Trivial) $RLCT_{\Omega}(I; \varphi) \leq d$

Theorem (Watanabe) RLCT $_{\Omega}(I; \varphi) \leq \operatorname{codim} \mathcal{V}(I)$

Theorem (L.)

If l_{τ} is the τ -distance of $\mathcal{P}(I)$ and θ_{τ} is its multiplicity, then

$$RLCT_{\Omega}(I; \omega^{\tau}) \leq (1/l_{\tau}, \theta_{\tau}).$$

Equality occurs when I is a monomial ideal.

Schizophrenic Patients

Integral Asymtotics

Singular Learning

Algebraic Geometry

Applications

- BIC
- Coin Toss
- Schizo Patients
- Model Selection

Applications to Statistics

Bayesian Information Criterion

Schizophrenic Patients

Integral Asymtotics

Singular Learning

Algebraic Geometry

Applications

- BIC
- Coin Toss
- Schizo Patients
- Model Selection

When the model is regular, the fiber ideal is $I = \langle \omega_1, \dots, \omega_d \rangle$. Using Newton polyhedra, the RLCT of this ideal is (d, 1).

By our theorem, the learning coefficient is $(\lambda, \theta) = (d/2, 1)$. By Watanabe's theorem, asymptotically

$$-\log Z_N \approx -\sum_{i=1}^N \log q(X_i) + \frac{d}{2} \log N.$$

This formula is the Bayesian Information Criterion (BIC).

Coin Toss

Schizophrenic Patients

Integral Asymtotics

Singular Learning

Algebraic Geometry

Applications

- BIC
- Coin Toss
- Schizo Patients
- Model Selection

$$Z(N) = \int_{[0,1]^2} (1 - x^2 y^2)^{N/2} dx dy.$$

The integral Z(N) comes from the coin toss model parametrized by

$$p_1(\omega, t) = \frac{1}{2}t + (1 - t)\omega = \frac{1}{2}(1 + xy)$$

$$p_2(\omega, t) = \frac{1}{2}t + (1 - t)(1 - \omega) = \frac{1}{2}(1 - xy)$$

where we substituted $\omega = (1+x)/2, t=1-y$.

Here, the true distribution is $\hat{p}_1 = \hat{p}_2 = 1/2$ and the fiber ideal is

$$I_{\hat{p}} = \langle \frac{1}{2}(1+xy) - \frac{1}{2}, \frac{1}{2}(1-xy) - \frac{1}{2} \rangle = \langle xy \rangle.$$

Using Newton polyhehra with $\tau=(0,0)$, we have $(l_{\tau},\theta_{\tau})=(1,2)$.

Therefore, the RLCT is (1,2), the learning coefficient is $(\frac{1}{2},1)$, and

$$Z(N) \approx CN^{-\frac{1}{2}}(\log N)$$

for some constant C > 0.

132 Schizophrenic Patients

Schizophrenic Patients

Integral Asymtotics

Singular Learning

Algebraic Geometry

Applications

- BIC
- Coin Toss
- Schizo Patients
- Model Selection

Model parametrized in $\omega = (t, a_1, a_2, \dots, d_3)$ by

Let the true distribution be $\hat{p}_{ij}=\frac{1}{9}$ for all i,j. Consider the point $\hat{w}=(\frac{1}{2},\frac{1}{3},\frac{1}{3},\ldots,\frac{1}{3})$ on the fiber over \hat{p} . Let us compute the RLCT at $\hat{\omega}$ of the fiber ideal

$$I = \langle p_{11}(\omega) - \hat{p}, \dots, p_{33}(\omega) - \hat{p} \rangle.$$

Using Macaulay2 and our library asymptotics.m2, we manipulate the ideal and show that

$$RLCT_{\hat{\omega}}(I;1) = (6,2).$$

All the learning coefficients can be computed in this fashion.

132 Schizophrenic Patients

Schizophrenic Patients

Integral Asymtotics

Singular Learning

Algebraic Geometry

Applications

- BIC
- Coin Toss
- Schizo Patients
- Model Selection

We want to approximate the marginal likelihood Z_N of the data

$$\left(\begin{array}{cccc}
43 & 16 & 3 \\
6 & 11 & 10 \\
9 & 18 & 16
\end{array}\right).$$

The EM algorithm gives us the maximum likelihood distribution

$$q = \frac{1}{132} \begin{pmatrix} 43.002 & 15.998 & 3.000 \\ 5.980 & 11.123 & 9.897 \\ 9.019 & 17.879 & 16.102 \end{pmatrix}.$$

Using the ML distribution as the *true distribution*, the learning coefficient is $(\frac{7}{2},1)$ (compare with $(\frac{9}{2},1)$ for BIC).

	$-\log Z_N$
Exact	273.1911759
BIC	278.3558034
RLCT	275.9144024

Model Selection (Joint work with Russell Steele)

Schizophrenic Patients

Integral Asymtotics

Singular Learning

Algebraic Geometry

Applications

- BIC
- Coin Toss
- Schizo Patients
- Model Selection

Question: The learning coefficients (λ_q, θ_q) of a statistical model \mathcal{M} depend on the true distribution q of the data which is unknown. How do we use these coefficients for model selection?

Proposal: The ML criterion and BIC may be expressed as:

$$ML = \max_{q \in \mathcal{M}} \{-\sum_{i=1}^{N} \log q(X_i)\},\$$

BIC =
$$\max_{q \in \mathcal{M}} \{ -\sum_{i=1}^{N} \log q(X_i) + \frac{d}{2} \log N \}.$$

For singular models, the BIC naturally generalizes to

$$\max_{q \in \mathcal{M}} \left\{ -\sum_{i=1}^{N} \log q(X_i) + \lambda_q \log N - (\theta_q - 1) \log \log N \right\}.$$

Conjecture: The generalized BIC for singular models is consistent.

Schizophrenic Patients

Integral Asymtotics

Singular Learning

Algebraic Geometry

Applications

- BIC
- Coin Toss
- Schizo Patients
- Model Selection

"Algebraic Methods for Evaluating Integrals in Bayesian Statistics"

http://math.berkeley.edu/~shaowei/swthesis.pdf

(PhD dissertation, May 2011)

References

Schizophrenic Patients

Integral Asymtotics

Singular Learning

Algebraic Geometry

Applications

- BIC
- Coin Toss
- Schizo Patients
- Model Selection

- 1. V. I. ARNOL'D, S. M. GUSEĬN-ZADE AND A. N. VARCHENKO: Singularities of Differentiable Maps, Vol. II, Birkhäuser, Boston, 1985.
- 2. A. Bravo, S. Encinas and O. Villamayor: A simplified proof of desingularisation and applications, *Rev. Math. Iberoamericana* **21** (2005) 349–458.
- 3. D. A. Cox, J. B. LITTLE, AND D. O'SHEA: *Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra*, Springer-Verlag, New York, 1997.
- 4. M. EVANS, Z. GILULA AND I. GUTTMAN: Latent class analysis of two-way contingency tables by Bayesian methods, *Biometrika* **76** (1989) 557–563.
- 5. H. HIRONAKA: Resolution of singularities of an algebraic variety over a field of characteristic zero I, II, *Ann. of Math.* (2) **79** (1964) 109–203.
- 6. S. LIN, B. STURMFELS AND Z. XU: Marginal likelihood integrals for mixtures of independence models, *J. Mach. Learn. Res.* **10** (2009) 1611–1631.
- 7. S. LIN: Algebraic methods for evaluating integrals in Bayesian statistics, PhD dissertation, Dept. Mathematics, UC Berkeley (2011).
- 8. S. WATANABE: *Algebraic Geometry and Statistical Learning Theory*, Cambridge Monographs on Applied and Computational Mathematics **25**, Cambridge University Press, Cambridge, 2009.