The Algebraic Geometry of Singular Learning Theory

Shaowei Lin (UC Berkeley)

13 June 2012 Pennsylvania State University

Singular Learning Bayesian Statistics Learning Coefficient Integral Asymptotics **RLCTs** Newton Polyhedra Computations **Singular Learning Theory**

Bayesian Statistics

Singular Learning

- Bayesian Statistics
- Learning Coefficient

Integral Asymptotics

RLCTs

Newton Polyhedra

Computations

X random variable with state space \mathcal{X} (e.g. $\{1,2,\ldots,k\}$, \mathbb{R}^k)

 Δ space of probability distributions on ${\mathcal X}$

 $\mathcal{M} \subset \Delta$ statistical model, image of $p: \Omega \to \Delta$

 Ω parameter space

 $p(x|\omega)dx$ distribution at $\omega \in \Omega$

 $\varphi(\omega)d\omega$ prior distribution on Ω

Given samples X_1, \ldots, X_N of X, define marginal likelihood

$$Z_N = \int_{\Omega} \prod_{i=1}^N p(X_i|\omega) \, \varphi(\omega) d\omega.$$

Given $q \in \Delta$, define *Kullback-Leibler function*

$$K(\omega) = \int_{\mathcal{X}} q(x) \log \frac{q(x)}{p(x|\omega)} dx.$$

Learning Coefficient

Singular Learning

- Bayesian Statistics
- Learning Coefficient

Integral Asymptotics

RLCTs

Newton Polyhedra

Computations

Suppose samples X_1, \ldots, X_N are drawn from distribution $q \in \mathcal{M}$. Define *empirical entropy* $S_N = -\frac{1}{N} \sum_{i=1}^N \log q(X_i)$.

Convergence of stochastic complexity (Watanabe)

The stochastic complexity has the asymptotic expansion

$$-\log Z_N = NS_N + \lambda_q \log N - (\theta_q - 1) \log \log N + R_N$$

where R_N converges in law to a random variable. Moreover, λ_q, θ_q are asymptotic coefficients of the deterministic integral

$$Z(N) = \int_{\Omega} e^{-NK(\omega)} \varphi(\omega) d\omega \approx CN^{-\lambda_q} (\log N)^{\theta_q - 1}.$$

For regular models, this is the *Bayesian Information Criterion*. Various names for (λ_q, θ_q) :

statistics - *learning coefficient* of the model $\mathcal M$ at q algebraic geometry - *real log canonical threshold* of $K(\omega)$

Singular Learning Integral Asymptotics Geometry Desingularization Algorithm **RLCTs** Newton Polyhedra Computations **Integral Asymptotics**

Geometry of the Integral

Singular Learning

Integral Asymptotics

- Geometry
- Desingularization
- Algorithm

RLCTs

Newton Polyhedra

Computations

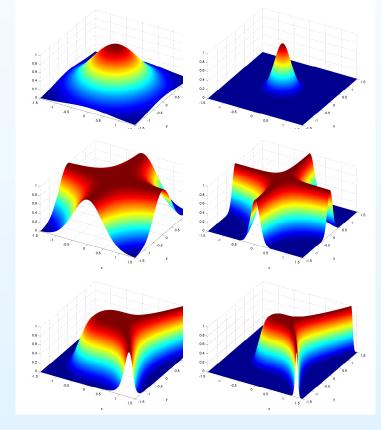
$$Z(N) = \int_{\Omega} e^{-Nf(\omega)} \varphi(\omega) d\omega \approx e^{-Nf^*} \cdot CN^{-\lambda} (\log N)^{\theta - 1}$$

Integral asymptotics depend on *minimum locus* of exponent $f(\omega)$.

$$f(x,y) = x^2 + y^2$$

$$f(x,y) = (xy)^2$$

$$f(x,y) = (y^2 - x^3)^2$$



Plots of integrand $e^{-Nf(x,y)}$ for N=1 and N=10

Desingularization and Monomial Functions

Singular Learning

Integral Asymptotics

- Geometry
- Desingularization
- Algorithm

RLCTs

Newton Polyhedra

Computations

Let $\Omega \subset \mathbb{R}^d$ and $f:\Omega \to \mathbb{R}$ analytic function.

- We say $\rho:U o\Omega$ desingularizes f if
 - 1. U is a d-dimensional real analytic manifold covered by coordinate patches U_1, \ldots, U_s (\simeq subsets of \mathbb{R}^d).
 - 2. For each restriction $ho:U_i o\Omega$, $f\circ \rho(\mu)=a(\mu)\mu^\kappa,\quad \det\partial\rho(\mu)=b(\mu)\mu^\tau$ where $a(\mu)$ and $b(\mu)$ are nonzero on U_i .
- Hironaka (1964) proved that desingularizations always exist.

RLCT of monomial functions (Arnol'd-Guseĭn-Zade-Varchenko)

$$Z(N) = \int_{\Omega} e^{-N\omega_1^{\kappa_1} \cdots \omega_d^{\kappa_d}} \omega_1^{\tau_1} \cdots \omega_d^{\tau_d} d\omega \approx CN^{-\lambda} (\log N)^{\theta - 1}$$

where $\lambda = \min_i \frac{\tau_i + 1}{\kappa_i}$, $\theta =$ number of times minimum is attained.

Algorithm for Computing RLCTs

Singular Learning

Integral Asymptotics

- Geometry
- Desingularization
- Algorithm

RLCTs

Newton Polyhedra

Computations

 $Z(N) = \int_{\Omega} e^{-Nf(\omega)} \varphi(\omega) d\omega \approx e^{-Nf^*} \cdot CN^{-\lambda} (\log N)^{\theta - 1}$

Input

Semialgebraic set $\Omega = \{\omega : g_1(\omega) \geq 0, \dots, g_l(\omega) \geq 0\} \subset \mathbb{R}^d$ Analytic functions $f, \varphi : \Omega \to \mathbb{R}$

Output

Asymptotic coefficients f^*, λ, θ

- 1. Find minimum f^* of f over Ω .
- 2. Find a desingularization ρ for product $(f f^*)g_1 \cdots g_l \varphi$.
- 3. Use AGV Theorem to find coefficients λ_i , θ_i on each patch U_i .
- 4. $\lambda = \min\{\lambda_i\}, \ \theta = \max\{\theta_i : \lambda_i = \lambda\}.$

Upper bound (trivial) $\lambda \leq \frac{d}{2}$

Upper bound (Watanabe) $\lambda \leq \frac{1}{2} (\text{ codim of minimum locus of } f)$

Singular Learning

Integral Asymptotics

RLCTs

- Polynomiality
- RLCTs of Ideals
- Discrete · Gaussian
- Geometry

Newton Polyhedra

Computations

Real Log Canonical Thresholds

Exploiting Polynomiality

Singular Learning

Integral Asymptotics

RLCTs

- Polynomiality
- RLCTs of Ideals
- Discrete · Gaussian
- Geometry

Newton Polyhedra

Computations

How do we desingularize $K(\omega) = \int_{\mathcal{X}} q(x) \log \frac{q(x)}{p(x|\omega)} dx$?

- Algorithms (e.g. Bravo-Encinas-Villamayor) intractable
- Many models parametrized by polynomials. Exploit this?

Regularly parametrized functions

• A function $f:\Omega \to \mathbb{R}$ is *regularly parametrized* if it factors

$$\Omega \xrightarrow{u} U \xrightarrow{g} \mathbb{R}$$

where $U \subset \mathbb{R}^k$ nbhd of origin, u is polynomial, g has unique minimum g(0) = 0 at the origin and $\det \partial^2 g(0) \neq 0$.

For such functions, define fiber ideal

$$I = \langle u_1(\omega), \dots, u_k(\omega) \rangle \subset \mathbb{R}[\omega_1, \dots, \omega_d].$$

The variety $\mathcal{V}(I)$ is the fiber $f^{-1}(0)$.

Equivalence (Watanabe) RLCT of f = RLCT of $u_1^2 + \cdots + u_k^2$.

Real Log Canonical Thresholds of Ideals

Singular Learning

Integral Asymptotics

RLCTs

- Polynomiality
- RLCTs of Ideals
- Discrete · Gaussian
- Geometry

Newton Polyhedra

Computations

Given ideal $I = \langle f_1(\omega), \dots, f_k(\omega) \rangle \subset \mathbb{R}[\omega_1, \dots, \omega_d]$, polynomial $\varphi(\omega)$, semialgebraic $\Omega \subset \mathbb{R}^d$.

The *real log canonical threshold* (λ, θ) of I at $x \in \Omega$ satisfies

$$\int_{\Omega_x} e^{-N(f_1^2 + \dots + f_k^2)} \varphi(\omega) d\omega \approx CN^{-\lambda} (\log N)^{\theta - 1}$$

for suff small nbhd Ω_x of x in Ω . Denote $(\lambda, \theta) = \mathrm{RLCT}_{\Omega_x}(I; \varphi)$.

Properties

- Definition is independent of choice of generators f_1, \ldots, f_k .
- λ positive *rational* number, θ positive *integer*.
- Depends on structure of boundary $\partial \Omega$ if $x \in \partial \Omega$.
- Order the (λ, θ) by the value of $N^{\lambda} (\log N)^{-\theta}$ for large N.

Discrete and Gaussian Models

Singular Learning

Integral Asymptotics

RLCTs

- Polynomiality
- RLCTs of Ideals
- Discrete · Gaussian
- Geometry

Newton Polyhedra

Computations

• Discrete models with state probabilities $p(\omega)$. Fiber ideal at a true distribution \hat{p}

$$I_{\hat{p}} = \langle p_i(\omega) - \hat{p}_i \rangle_i$$

• Gaussian models with mean $\mu(\omega)$ and covariance $\Sigma(\omega)$. Fiber ideal at a true distribution $\mathcal{N}(\hat{\mu}, \hat{\Sigma})$

$$I_{\hat{\mu},\hat{\Sigma}} = \langle \mu_i(\omega) - \hat{\mu}_i, \Sigma_{ij}(\omega) - \hat{\Sigma}_{ij} \rangle_{ij}$$

Learning coefficients and RLCTs of fiber ideals (L.)

If the true distribution q is in the model, then the learning coefficient (λ_q, θ_q) is given by

$$(2\lambda_q, \theta_q) = \min_{x \in \mathcal{V}(I_q)} RLCT_{\Omega_x}(I_q; \varphi)$$

where I_q is the fiber ideal at q and $\mathcal{V}(I_q) \subset \Omega$ is the fiber over q.

Geometry of Singular Models

Singular Learning

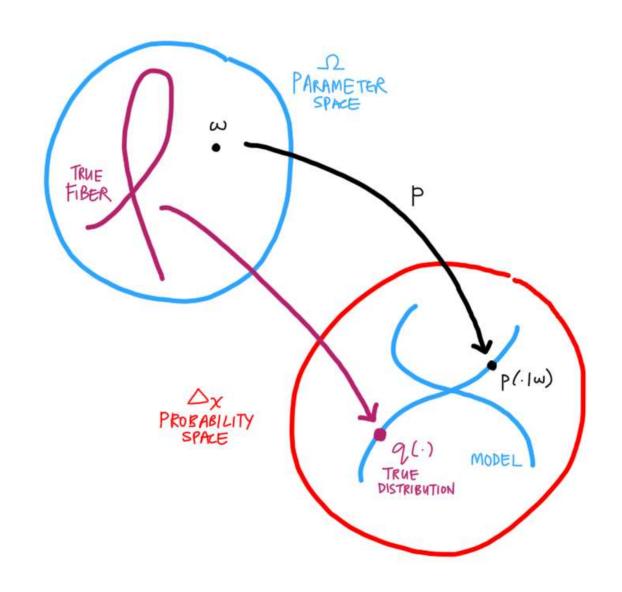
Integral Asymptotics

RLCTs

- Polynomiality
- RLCTs of Ideals
- Discrete · Gaussian
- Geometry

Newton Polyhedra

Computations



Singular Learning Integral Asymptotics **RLCTs** Newton Polyhedra Distance · Multiplicity Relation to RLCTs Computations **Newton Polyhedra**

Distance and Multiplicity

Singular Learning

Integral Asymptotics

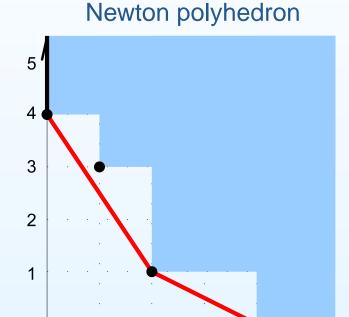
RLCTs

Newton Polyhedra

- Distance · Multiplicity
- Relation to RLCTs

Computations

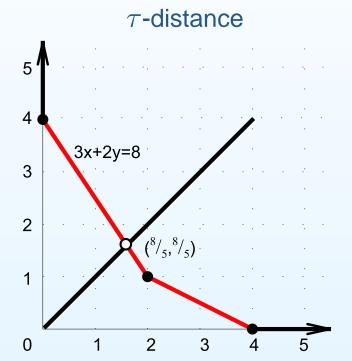
e.g. Let $I=\langle x^4,x^2y,xy^3,y^4\rangle$ and $\tau=(1,1)$.



2

0

3



The au-distance is $l_{ au}=8/5$ and the multiplicity is $heta_{ au}=1$.

Distance and Multiplicity

Singular Learning

Integral Asymptotics

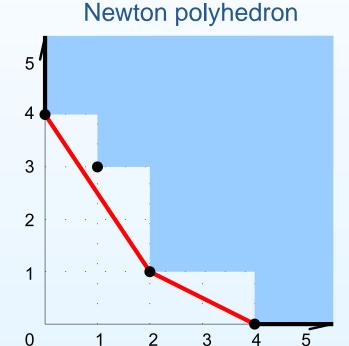
RLCTs

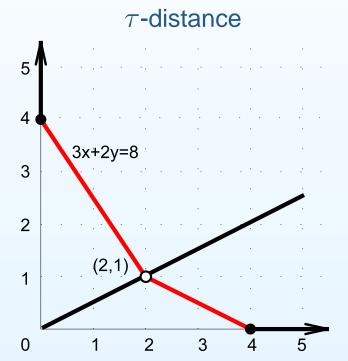
Newton Polyhedra

- Distance · Multiplicity
- Relation to RLCTs

Computations

e.g. Let $I=\langle x^4,x^2y,xy^3,y^4\rangle$ and $\tau=(2,1)$.





The au-distance is $l_{ au}=1$ and the multiplicity is $\theta_{ au}=2$.

Relation to RLCTs

Singular Learning

Integral Asymptotics

RLCTs

Newton Polyhedra

- Distance · Multiplicity
- Relation to RLCTs

Computations

Given an ideal $I \subset \mathbb{R}[\omega_1, \dots, \omega_d]$,

- 1. Plot $lpha \in \mathbb{R}^d$ for each monomial ω^lpha appearing in some $f \in I$.
- 2. Take the convex hull $\mathcal{P}(I)$ of all plotted points.

This convex hull $\mathcal{P}(I)$ is the *Newton polyhedron* of I.

Given a vector $au \in \mathbb{Z}^d_{>0}$, define

- 1. τ -distance $l_{\tau} = \min\{t : t\tau \in \mathcal{P}(I)\}.$
- 2. multiplicity $\theta_{\tau} = \text{codim of face of } \mathcal{P}(I)$ at this intersection.

Upper bound and equality for RLCT (L.)

If $l_{ au}$ is the au-distance of $\mathcal{P}(I)$ and $heta_{ au}$ is its multiplicity, then

$$RLCT_{\Omega}(I; \omega^{\tau-1}) \leq (1/l_{\tau}, \theta_{\tau}).$$

Equality occurs when I is a monomial ideal.

Singular Learning

Integral Asymptotics

RLCTs

Newton Polyhedra

Computations

- Schizo Patients
- Model Definition
- Fiber Ideal
- Gröbner Basis
- Monomialization

Macaulay2

Computations

132 Schizophrenic Patients (Evans-Gilula-Guttman)

Singular Learning

Integral Asymptotics

RLCTs

Newton Polyhedra

Computations

- Schizo Patients
- Model Definition
- Fiber Ideal
- Gröbner Basis
- Monomialization

Naïve Bayes network with 2 ternary variables, 2 hidden states.

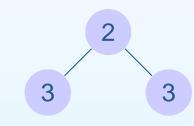
Model parametrized in $\omega = (t, a_1, a_2, \dots, d_3)$ by

$$p = \begin{pmatrix} ta_1b_1 + (1-t)c_1d_1 & ta_1b_2 + (1-t)c_1d_2 & ta_1b_3 + (1-t)c_1d_3 \\ ta_2b_1 + (1-t)c_2d_1 & ta_2b_2 + (1-t)c_2d_2 & ta_2b_3 + (1-t)c_2d_3 \\ ta_3b_1 + (1-t)c_3d_1 & ta_3b_2 + (1-t)c_3d_2 & ta_3b_3 + (1-t)c_3d_3 \end{pmatrix}.$$

Assume true distribution $\hat{p}_{ij} = \frac{1}{9}$ for all i, j.

Compute RLCT of fiber ideal

$$I=\langle p_{11}(\omega)-\hat{p},\ldots,p_{33}(\omega)-\hat{p}
angle$$
 at the point $\hat{w}=(\frac{1}{2},\frac{1}{3},\frac{1}{3},\ldots,\frac{1}{3})\in\mathcal{V}(I).$



Computations using our library asymptotics.m2 show that

$$RLCT_{\hat{\omega}}(I;1) = (6,2).$$

All other learning coefficients can be computed in this fashion.

Model Definition

Singular Learning

Integral Asymptotics

RLCTs

Newton Polyhedra

Computations

- Schizo Patients
- Model Definition
- Fiber Ideal
- Gröbner Basis
- Monomialization

```
Macaulay2, version 1.4
with packages: ConwayPolynomials, Elimination,
                IntegralClosure, LLLBases,
                PrimaryDecomposition, ReesAlgebra,
                TangentCone
i1 : load "asymptotics.m2";
i2 : R = QQ[t,a1,a2,b1,b2,c1,c2,d1,d2];
i3 : A = matrix \{\{a1, a2, 1-a1-a2\}\};
i4 : B = matrix \{\{b1, b2, 1-b1-b2\}\};
i5 : C = \text{matrix} \{\{c1, c2, 1-c1-c2\}\};
i6 : D = matrix \{\{d1, d2, 1-d1-d2\}\};
i7 : P = t*(transpose A)*B + (1-t)*(transpose C)*D;
o7: Matrix R <--- R
```

Fiber Ideal

Singular Learning

Integral Asymptotics

RLCTs

Newton Polyhedra

Computations

- Schizo Patients
- Model Definition
- Fiber Ideal
- Gröbner Basis
- Monomialization

Maps for shifting the origin to $\hat{\omega}$ and evaluating a polynomial at $\hat{\omega}$.

```
i8 : shift = map(R,R,\{t+1/2,a1+1/3,a2+1/3,b1+1/3,b2+1/3,c1+1/3,c2+1/3,c2+1/3,d1+1/3,d2+1/3\});
i9 : eval = map(R,R,\{1/2,1/3,1/3,1/3,1/3,1/3,1/3\});
```

The true distribution.

```
i10 : eval P

o10 = {-1} | 1/9 1/9 1/9 |

{-1} | 1/9 1/9 1/9 |

{-1} | 1/9 1/9 1/9 |
```

The fiber ideal.

```
i11 : I = ideal (shift P - eval P);
o11 : Ideal of R
```

Gröbner Basis

Singular Learning

Integral Asymptotics

RLCTs

Newton Polyhedra

Computations

- Schizo Patients
- Model Definition
- Fiber Ideal
- Gröbner Basis
- Monomialization

Gröbner basis of the fiber ideal.

Preliminary upper bound of the RLCT.

```
i13 : RLCT(I,1)
[RLCT] Warning: Output RLCT is an upper bound.

o13 = (8, 1)
```

To compute the RLCT, we transform I into a monomial ideal.

Gröbner Basis

Singular Learning

Integral Asymptotics

RLCTs

Newton Polyhedra

Computations

- Schizo Patients
- Model Definition
- Fiber Ideal
- Gröbner Basis
- Monomialization

Gröbner basis of the fiber ideal.

The red generator prevents I from being a monomial ideal. Replace it with new indeterminate β_2 via the change of variable

$$b_2 = \frac{\beta_2 - (1 - 2t)d_2}{1 + 2t}$$

which is a real-analytic isomorphism near the origin.

We can also accomplish this by introducing a new polynomial $-\beta_2 + 2tb_2 - 2td_2 + b_2 + d_2$ to the ideal and eliminating b_2 .

Monomialization

Singular Learning

Integral Asymptotics

RLCTs

Newton Polyhedra

Computations

- Schizo Patients
- Model Definition
- Fiber Ideal
- Gröbner Basis
- Monomialization

Perform similar transformations to a_1, a_2, b_1, b_2 .

Finally, we have a monomial ideal so we can compute its RLCT.

```
i18 : RLCT(I1,1)
o18 = (6, 2)
```

Singular Learning

Integral Asymptotics

RLCTs

Newton Polyhedra

Computations

- Schizo Patients
- Model Definition
- Fiber Ideal
- Gröbner Basis
- Monomialization

"Algebraic Methods for Evaluating Integrals in Bayesian Statistics"

http://math.berkeley.edu/~shaowei/swthesis.pdf

(PhD dissertation, May 2011)

References

Singular Learning

Integral Asymptotics

RLCTs

Newton Polyhedra

Computations

- Schizo Patients
- Model Definition
- Fiber Ideal
- Gröbner Basis
- Monomialization

- 1. V. I. ARNOL'D, S. M. GUSEĬN-ZADE AND A. N. VARCHENKO: Singularities of Differentiable Maps, Vol. II, Birkhäuser, Boston, 1985.
- 2. A. BRAVO, S. ENCINAS AND O. VILLAMAYOR: A simplified proof of desingularisation and applications, *Rev. Math. Iberoamericana* **21** (2005) 349–458.
- 3. D. A. Cox, J. B. LITTLE, AND D. O'SHEA: *Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra*, Springer-Verlag, New York, 1997.
- 4. M. EVANS, Z. GILULA AND I. GUTTMAN: Latent class analysis of two-way contingency tables by Bayesian methods, *Biometrika* **76** (1989) 557–563.
- 5. H. HIRONAKA: Resolution of singularities of an algebraic variety over a field of characteristic zero I, II, *Ann. of Math.* (2) **79** (1964) 109–203.
- S. LIN, B. STURMFELS AND Z. XU: Marginal likelihood integrals for mixtures of independence models, *J. Mach. Learn. Res.* 10 (2009) 1611–1631.
- 7. S. LIN: Algebraic methods for evaluating integrals in Bayesian statistics, PhD dissertation, Dept. Mathematics, UC Berkeley (2011).
- 8. S. WATANABE: *Algebraic Geometry and Statistical Learning Theory*, Cambridge Monographs on Applied and Computational Mathematics **25**, Cambridge University Press, Cambridge, 2009.

Singular Learning Integral Asymptotics **RLCTs** Newton Polyhedra Computations **Supplementary Material**

Nondegenerate Ideals

Singular Learning

Integral Asymptotics

RLCTs

Newton Polyhedra

Computations

Let $[\omega^{\alpha}]f$ denote coefficient of monomial ω^{α} in polynomial f.

Given $\gamma \subset \mathbb{R}^d$ and poly f, define face poly $f_\gamma = \sum_{\alpha \in \gamma} ([\omega^\alpha] f) \omega^\alpha$. Given $\gamma \subset \mathbb{R}^d$ and ideal I, define face ideal $I_\gamma = \langle f_\gamma : f \in I \rangle$.

We say I is sos-nondegenerate if for all compact faces $\gamma \subset \mathcal{P}(I)$, the real variety $\mathcal{V}(I_{\gamma})$ does not intersect the torus $(\mathbb{R}^*)^d$.

Remark sos = sum-of-squares. Saia has similar notion of nondegeneracy for ideals of *complex* formal power series.

Proposition (L.) If $I = \langle f_1, \dots, f_r \rangle$ and γ is a compact face of the Newton polyhedron $\mathcal{P}(I)$, then $I_{\gamma} = \langle f_{1\gamma}, \dots, f_{r\gamma} \rangle$.

Proposition (L.) $RLCT(I; \omega^{\tau-1}) = (1/l_{\tau}, \theta_{\tau})$ if I is sos-ndg.

Proposition (Zwiernik) Monomial ideals are sos-ndg.

Higher Order Asymptotics

Singular Learning

Integral Asymptotics

RLCTs

Newton Polyhedra

Computations

Using fiber ideals and toric blowups, we were able to compute higher order asymptotics of the statistical integral

$$Z(N) = \int_{[0,1]^2} (1 - x^2 y^2)^{N/2} dx dy \approx$$

$$\sqrt{\frac{\pi}{8}} N^{-\frac{1}{2}} \log N \qquad -\sqrt{\frac{\pi}{8}} \left(\frac{1}{\log 2} - 2 \log 2 - \gamma \right) N^{-\frac{1}{2}} \\
-\frac{1}{4} N^{-1} \log N \qquad +\frac{1}{4} \left(\frac{1}{\log 2} + 1 - \gamma \right) N^{-1} \\
-\frac{\sqrt{2\pi}}{128} N^{-\frac{3}{2}} \log N \qquad +\frac{\sqrt{2\pi}}{128} \left(\frac{1}{\log 2} - 2 \log 2 - \frac{10}{3} - \gamma \right) N^{-\frac{3}{2}} \\
-\frac{1}{24} N^{-2} + \cdots$$

Euler-Mascheroni constant

$$\gamma = \lim_{n \to \infty} \left(\sum_{k=1}^{n} \frac{1}{k} - \log n \right) \approx 0.5772156649.$$

Learning Coefficients for Schizo Patients

Singular Learning

Integral Asymptotics

RLCTs

Newton Polyhedra

Computations

$$Z_N = \int_{\Omega} \prod_{i,j} p_{ij}(\omega)^{U_{ij}} \varphi(\omega) d\omega$$

Using Watanabe's Singular Learning Theory,

$$-\log Z_N \approx -\sum_{i,j} U_{ij} \log q_{ij} + \lambda_q \log N - (\theta_q - 1) \log \log N$$

where the *learning coefficient* (λ_q, θ_q) is given by

$$(\lambda_q, \theta_q) = \begin{cases} (5/2, 1) & \text{if } \operatorname{rank} q = 1, \\ (7/2, 1) & \text{if } \operatorname{rank} q = 2, \ q \notin \left[\begin{smallmatrix} 0 & \times \\ \times & \times \end{smallmatrix} \right] \cup \left[\begin{smallmatrix} 0 & \times \\ \times & 0 \end{smallmatrix} \right], \\ (4, 1) & \text{if } \operatorname{rank} q = 2, \ q \in \left[\begin{smallmatrix} 0 & \times \\ \times & \times \end{smallmatrix} \right] \setminus \left[\begin{smallmatrix} 0 & \times \\ \times & 0 \end{smallmatrix} \right], \\ (9/2, 1) & \text{if } \operatorname{rank} q = 2, \ q \in \left[\begin{smallmatrix} 0 & \times \\ \times & 0 \end{smallmatrix} \right]. \end{cases}$$

Here,
$$q \in \left[\begin{smallmatrix} 0 & \times \\ \times & \times \end{smallmatrix} \right]$$
 if for some $i,j,\ q_{ii}=0$ and $q_{ij}\ q_{ji}\ q_{jj} \neq 0$, $q \in \left[\begin{smallmatrix} 0 & \times \\ \times & 0 \end{smallmatrix} \right]$ if for some $i,j,\ q_{ii}=q_{jj}=0$ and $q_{ij}\ q_{ji} \neq 0$.

Model Selection (Joint work with Russell Steele)

Singular Learning

Integral Asymptotics

RLCTs

Newton Polyhedra

Computations

Question: The learning coefficients (λ_q, θ_q) of a statistical model \mathcal{M} depend on the true distribution q of the data which is unknown. How do we use these coefficients for model selection?

Proposal: The ML criterion and BIC may be expressed as:

$$\begin{aligned} \mathsf{ML} &= \max_{q \in \mathcal{M}} \{ -\sum_{i=1}^{N} \log q(X_i) \}, \\ \mathsf{BIC} &= \max_{q \in \mathcal{M}} \{ -\sum_{i=1}^{N} \log q(X_i) + \frac{d}{2} \log N \}. \end{aligned}$$

For singular models, the BIC naturally generalizes to

$$\max_{q \in \mathcal{M}} \left\{ -\sum_{i=1}^{N} \log q(X_i) + \lambda_q \log N - (\theta_q - 1) \log \log N \right\}.$$

(Maximize marginal likelihood approx over all true distributions.)

Conjecture: The generalized BIC for singular models is consistent.