Math 1B Section 101 23 Sep 2009 Quiz #4 (15 min)

Name: ______ Score: /10

1. (5 points) Find the area of the surface obtained by rotating about the x-axis the curve $x = 1 + y^2, 0 \le y \le 1$.

Ans:

Surface Area
$$= \int_0^1 2\pi y \sqrt{1 + \left(\frac{dx}{dy}\right)^2} dy$$
$$= \int_0^1 2\pi y \sqrt{1 + 4y^2} dy$$

We make a substitution $u = 1 + 4y^2$, du = 8y dy.

Surface Area =
$$\frac{2\pi}{8} \int_{1}^{5} \sqrt{u} \ du = \frac{\pi}{4} \left[\frac{2}{3} u^{3/2} \right]_{1}^{5} = \frac{\pi}{6} (5\sqrt{5} - 1)$$

- 2. Consider the region bounded by the curves $y = 1 x^2$ and y = 0.
 - (a) (2 points) Find the area of the region.
 - (b) (3 points) Find the coordinates of the centroid of the region.

Ans:

(a)

$$A = \int_{-1}^{1} 1 - x^2 dx = 2 \int_{0}^{1} 1 - x^2 dx = 2 \left[x - \frac{1}{3} x^3 \right]_{0}^{1} = \frac{4}{3}.$$

(b) Because the region is symmetric about the y-axis, we have $\bar{x} = 0$. Meanwhile,

$$\bar{y} = \frac{1}{A} \int_{-1}^{1} \frac{1}{2} (1 - x^{2})^{2} dx$$

$$= \frac{1}{A} \cdot 2 \int_{0}^{1} \frac{1}{2} (1 - 2x^{2} + x^{4}) dx$$

$$= \frac{1}{A} \left[x - \frac{2}{3} x^{3} + \frac{1}{5} x^{5} \right]_{0}^{1}$$

$$= \frac{3}{4} \cdot \frac{8}{15} = \frac{2}{5}$$

In this question, noticing the symmetry about the y-axis helped simplify the computations. We replace integrals in the interval [-1, 1] with twice the integrals in [0, 1].

3. (bonus, 0 points) Consider a curve y = f(x), $a \le x \le b$. Let s(x) be the arc length function. We thicken the curve by a small amount δ perpendicular to the curve. Breaking this region into small pieces of length ds and width δ , we see that its centroid is

$$\bar{x} = \frac{\int x\delta \ ds}{\int \delta \ ds} = \frac{\int x \ ds}{\int ds}, \quad \bar{y} = \frac{\int y\delta \ ds}{\int \delta \ ds} = \frac{\int y \ ds}{\int ds}$$

This formula is only an approximation, but as δ goes to 0, it becomes exact.

Show that the area of the surface obtained by rotating the curve about the x-axis is the product of the arc length of the curve with the distance traveled by its centroid. Use this to find the surface area of a donut, formed by rotating a circle of radius r centered at (x, y) = (0, R) about the x-axis, where R > r. What about rotating a square of width 2r centered at (0, R) with sides parallel to the x, y-axes?

Ans: The area of the surface of revolution is $\int 2\pi y \, ds$, while the product of the arc length with the distance travelled by the centroid is

$$\left(\int ds\right) \cdot \left(2\pi \bar{y}\right) = \left(\int ds\right) \cdot \left(2\pi \frac{\int y \, ds}{\int ds}\right) = \int 2\pi y \, ds$$

as required. The centroid of a circle is its center, so the distance travelled by the center of the above circle is $2\pi R$. The arc length of the circle is its circumference $2\pi r$. Hence, the surface area of the donut is $4\pi^2 Rr$.

The surface area of the rotated square by the centroid formula is $(2\pi R)(8r) = 16\pi Rr$. One can check that this agrees with the answer derived by summing up the areas of the surfaces obtained by rotating each side of the square.

$$top = 2\pi (R+r)(2r)$$

$$bottom = 2\pi (R-r)(2r)$$

$$left = right = \pi ((R+r)^2 - (R-r)^2) = 4\pi Rr$$

Quiz Statistics

Score	Count
0	2
1	0
2	0
3	1
4	2
5	2
6	3
7	2
8	5
9	4
10	9
Ave = 7.30	

Common Mistakes

- Q1 Using $\int 2\pi x \ ds$ rather than $\int 2\pi y \ ds$
- Q2 Simplification errors: the computation is correct but the final answer wrong.
- Q3 Wrong region (only half the correct one).
- Q3 Wrong formula for centroid.
- Q3 Switching the formulas for \bar{x} and \bar{y} .
- Q3 Not noticing that the region is symmetric about the y-axis, so $\bar{x} = 0$.