Math 1B Section 101 02 Dec 2009 Quiz #14 (15 min)

/10

Name:	Score:
Find the general solution of the differential equation y'' –	$2y' + 2y = 2e^x \cos x \text{ using:}$
1. (5 points) the method of undetermined coefficients.	•
complimentary equation $y''-2y'+2y=$ anx equation $r^2-2r+2=$	0
complimentary solutions $y = C_1 e^* cos;$ trial solution $y = A \times e^* cos;$ there, we multiplied the trial solution $e^* cos \times and e^* sin \times ave complimentary$	x + Cz e*sin x
$ \begin{array}{ccc} $	
= (Ax+Bx+A) excosx + (Bx-Ax+B)	e ^x sin x
4"= (A+B) excosx + (Ax+Bx+A)(excosx	-e*sinx)
$+(B-A)e^x\sin x + (Bx-Ax+B)(e^x\sin x)$	$(+e^{x}\cos x)$
= $2(Bx+A+B)e^{x}\cos x + 2(-Ax-A+B)$	exsinx
$7e^{x}\cos x = y'' - 2y' + 2y = 2Be^{x}\cos x$	- ZA exsinx
Hence, B=1, A=0.	
The general solution is	
$y(x) = xe^x \sin x + c, e^x \cos x + c$	r.excinx

2. (5 points) the method of variation of parameters.

$$y = C_1 e^x \cos x + C_2 e^x \sin x$$

 $y = U_1 e^x \cos x + U_2 e^x \sin x$
 $U_1' e^x \cos x + U_2' e^x \sin x = 0$

$$u'(\frac{e^{x}\cos x}{-e^{x}\sin x}) + u''(\frac{e^{x}\sin x}{+e^{x}\cos x}) = 2e^{x}\cos x$$
 (2)

Since ex is positive, we divide O, O by ex.

Subtracting (9-3:

Now, Brinx + \$ cosx gives:

$$\Rightarrow$$
 $U_1' = 2\cos^2 x = \cos 2x + 1$

From B and B;

$$u'_1 = -\frac{u'_2 \sin x}{\cos x} = -2 \cos x \sin x = -\sin 2x$$

Thus, the general solution is

$$y(x) = \left(\frac{1}{2}\cos 2x + C_1\right)e^{x}\cos x + \left(\frac{1}{2}\sin 2x + x + C_1\right)e^{x}\sin x$$

=
$$\frac{1}{2}e^{x}(\cos 2x \cos x + \sin 2x \sin x) = \frac{1}{2}e^{x}\cos(2x-x)$$

so we may absorb this term into $C_1e^{x}\cos x$, giving $g(x) = C_1e^{x}\cos x + C_2e^{x}\sin x + xe^{x}\sin x$.

Quiz Statistics

Scores	0	1	2	3	4	5	6	7	8	9	10
	5	0	0	2	3	4	9	3	4	0	0

Average 4.83

Grading Scheme

Q1)

- (1 pt) Correct auxiliary equation and roots.
- (1 pt) Correct complimentary solution y_c .
- (1 pt) Correct form of trial solution y_p .
- (1 pt) Correct solving of coefficients in trial solution.
- (1 pt) Writing the general solution as $y = y_c + y_p$.

Q2)

- (1 pt) Correct form of particular solution.
- (1 pt) Correct conditions that u_1 , u_2 must satisfy.
- (1 pt) Solving and integrating for u_1 .
- (1 pt) Solving and integrating for u_2 .
- (1 pt) Writing the general solution with constants of integration.

Observations

- Q1. Forgetting to multiply the trial solution by x.
- Q1. Arithmetic mistakes in differentiating and summing y_p , y'_p , y''_p .
- Q2. In $e^x(c_1 \cos x + c_2 \sin x)$, saying $y_1 = \cos x$, $y_2 = \sin x$ instead of $y_1 = e^x \cos x$, $y_2 = e^x \sin x$.
- Q2. The student painstakingly derives the conditions $u'_1y_1 + u'_2y_2 = 0$, $u'_1y'_1 + u'_2y'_2 = G(x)/a$ rather than just recalling and applying it.