UNBOUNDED CONVEX SEMIALGEBRAIC SETS AS SPECTRAHEDRAL SHADOWS (ERRATA)

SHAOWEI LIN

1. Research Report

The research report "Unbounded Convex Semialgebraic Sets as Spectrahedral Shadows" can be found at the following website.

http://www1.i2r.a-star.edu.sg/~lins/files/lmi.pdf

2. Errata

06 May **2012**. Tom-Lukas Kriel from the University of Konstanz pointed out a mistake to the claim that the definition given at the top of page 6 of the report is independent of the choice of the component. The following is a corrected definition of sos-concavity and quasi-concavity for homogeneous polynomials.

Let $f(x_0, x_1, ..., x_n)$ be a homogeneous polynomial and $u = (u_0, u_1, ..., u_n)$ be a point. Given an invertible (n + 1)-by-(n + 1) matrix A, let $v = A^{-1}u$ and suppose v_0 is nonzero. Then, the A-dehomogenization of f at u is the polynomial $g(y_1, ..., y_n)$ which comes from substituting $y_0 = v_0$ in the polynomial f(Ay). We say that a homogeneous polynomial f is sos-concave (or quasi-concave at u) if there exists some matrix A such that the A-homogenization of f at u is sos-concave (or quasi-concave at $v = A^{-1}u$).

Then, the proof of Theorem 4.3 just needs to apply the linear transformation A to $T_k \cap \bar{B}(u, \delta)$ to represent it as a spectrahedral shadow.

Date: April 1, 2013.