Asymptotic Approximation of Marginal Likelihood Integrals

Shaowei Lin (UC Berkeley)

shaowei@math.berkeley.edu

26 Aug 2010

Leibniz Universität, Hannover, Germany

A Statistical Example

132 Schizophrenic Patients

Evans-Gilula-Guttman(1989) studied schizophrenic patients for connections between recovery time (in years Y) and frequency of visits by relatives.

	$2 \le Y < 10$	$10 \le Y < 20$	$20 \leq Y$	Totals
Regularly	43	16	3	62
Rarely	6	11	10	27
Never	9	18	16	43
Totals	58	45	29	132

Proposed two statistical models to explain the data.

132 Schizophrenic Patients

Model 1: Independence Model

	$2 \le Y < 10$	$10 \le Y < 20$	$20 \leq Y$
Regularly	a_1b_1	a_1b_2	a_1b_3
Rarely	a_2b_1	a_2b_2	a_2b_3
Never	a_3b_1	a_3b_2	$a_{3}b_{3}$

132 Schizophrenic Patients

Model 1: Independence Model

$$2 \le Y < 10$$
 $10 \le Y < 20$ $20 \le Y$ Regularly a_1b_1 a_1b_2 a_1b_3 Rarely a_2b_1 a_2b_2 a_2b_3 Never a_3b_1 a_3b_2 a_3b_3

Model 2: Hidden Variable Model

$$2 \leq Y < 10 \qquad 10 \leq Y < 20 \qquad 20 \leq Y$$
 Regularly $ta_1b_1 + (1-t)c_1d_1 \quad ta_1b_2 + (1-t)c_1d_2 \quad ta_1b_3 + (1-t)c_1d_3$ Rarely $ta_2b_1 + (1-t)c_2d_1 \quad ta_2b_2 + (1-t)c_2d_2 \quad ta_2b_3 + (1-t)c_2d_3$ Never $ta_3b_1 + (1-t)c_3d_1 \quad ta_3b_2 + (1-t)c_3d_2 \quad ta_3b_3 + (1-t)c_3d_3$

Marginal Likelihood Integrals

In Bayesian statistics, models are selected by comparing marginal likelihood integrals.

$$Z = \int_{\Omega} \prod_{i} p_{i}(\omega)^{U_{i}} \varphi(\omega) d\omega$$

 U_i the data, Ω parameter space $p_i(\omega)$ functions parametrizing the model $\varphi(\omega)$ prior belief about parameter space

Marginal Likelihood Integrals

e.g. Independence Model

Reg.
$$2 \le Y < 10$$
 $10 \le Y < 20$ $20 \le Y$ Totals Reg. a_1b_1 (43) a_1b_2 (16) a_1b_3 (3) (62) Rarely a_2b_1 (6) a_2b_2 (11) a_2b_3 (10) (27) Never a_3b_1 (9) a_3b_2 (18) a_3b_3 (16) (43) Totals (58) (45) (29)

$$Z_1 = \int_{\Delta_2} \int_{\Delta_2} a_1^{62} a_2^{27} a_3^{43} b_1^{58} b_2^{45} b_3^{29} da db$$

$$a = (a_1, a_2, a_3), b = (b_1, b_2, b_3)$$

$$\Delta_2 = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_i \ge 0, \sum_i x_i = 1\}$$

Asymptotic Approximation

IMPORTANT PROBLEM IN STATISTICS

Compute
$$Z(n) = \int_{\Omega} \prod_{i=1}^{k} p_i(\omega)^{nq_i} \varphi(\omega) d\omega$$

where n sample size, $q_i = U_i/n$ relative frequencies.

Assumptions:

 Ω compact and semianalytic

i.e. $\Omega=\{\omega\in\mathbb{R}^d:g_1\geq 0,\ldots,g_l\geq 0\}$, g_i real analytic on \mathbb{R}^d φ nearly analytic

i.e. $\varphi = \varphi_s \varphi_a$, φ_s positive and smooth, φ_a real analytic on Ω p_i positive real analytic functions on Ω summing to 1 q true distribution lying in $p(\Omega)$

Asymptotic Approximation

IMPORTANT PROBLEM IN STATISTICS

Compute
$$Z(n) = \int_{\Omega} \prod_{i=1}^{k} p_i(\omega)^{nq_i} \varphi(\omega) d\omega$$

• L.-Sturmfels-Xu(2008) gave efficient algorithms for computing Z(n) exactly for small samples n.

Asymptotic Approximation

IMPORTANT PROBLEM IN STATISTICS

Compute
$$Z(n) = \int_{\Omega} \prod_{i=1}^{k} p_i(\omega)^{nq_i} \varphi(\omega) d\omega$$

- L.-Sturmfels-Xu(2008) gave efficient algorithms for computing Z(n) exactly for small samples n.
- Asymptotically, as $n \to \infty$,

$$Z(n) \approx (\prod_{i=1}^k q_i^{q_i})^n \cdot Cn^{-\lambda} (\log n)^{\theta-1}$$

In this talk, we discuss how to compute (λ, θ) .

In machine learning, λ is called the *learning coefficient* of the statistical model and θ its *multiplicity*.

Statistical Learning Theory and Singularity Theory

Statistical Learning Theory

In statistics, it is customary to write our marginal likelihood integral as the Laplace integral

$$Z(n) = \int_{\Omega} \prod_{i=1}^{k} p_i(\omega)^{nq_i} \varphi(\omega) d\omega$$
$$= (\prod_{i=1}^{k} q_i^{q_i})^n \int_{\Omega} e^{-nK(\omega)} \varphi(\omega) d\omega$$

where $\prod_{i=1}^k q_i^{q_i}$ is the maximum likelihood and $K(\omega)$ is the Kullback-Leibler distance

$$K(\omega) = \sum_{i=1}^{k} q_i \log \frac{q_i}{p_i(\omega)}.$$

Statistical Learning Theory

Theorem (Watanabe)

The Laplace integrals defined by functions

$$K(\omega) = \sum_{i=1}^{k} q_i \log \frac{q_i}{p_i(\omega)}$$
$$Q(\omega) = \sum_{i=1}^{k} (p_i(\omega) - q_i)^2$$

are asymptotically the same up to a constant, i.e.

$$\int_{\Omega} e^{-nK(\omega)} |\varphi(\omega)| d\omega \approx C_1 n^{-\lambda} (\log n)^{\theta-1}$$

$$\int_{\Omega} e^{-nQ(\omega)} |\varphi(\omega)| d\omega \approx C_2 n^{-\lambda} (\log n)^{\theta-1}$$

for some constants $\lambda, \theta, C_1, C_2$.

Singularity Theory

Theorem (Arnold-Gusein-Zade-Varchenko)

Let f be a real analytic function on Ω with $f(\omega^*) = 0$ for some $\omega^* \in \Omega$. If we have asymptotics

$$Z(n) = \int_{\Omega} e^{-n|f(\omega)|} |\varphi(\omega)| d\omega \approx Cn^{-\lambda} (\log n)^{\theta - 1},$$

then λ is the smallest pole of the zeta function

$$\zeta(z) = \int_{\Omega} |f(\omega)|^{-z} |\varphi(\omega)| d\omega, \quad z \in \mathbb{C}$$

and θ is the multiplicity of this pole.

Singularity Theory

Theorem (Arnold-Gusein-Zade-Varchenko)

Let f be a real analytic function on Ω with $f(\omega^*) = 0$ for some $\omega^* \in \Omega$. Then, asymptotically, we have

$$Z(n) = \int_{\Omega} e^{-n|f(\omega)|} |\varphi(\omega)| d\omega \approx \sum_{\alpha} \sum_{i=0}^{d-1} c_{i,\alpha} n^{-\alpha} (\log n)^{i}.$$

The α in this expansion range over positive rational numbers which are poles of

$$\zeta(z) = \int_{\Omega_{\delta}} |f(\omega)|^{-z} |\varphi(\omega)| d\omega$$

where $\Omega_{\delta} = \{\omega \in \Omega : |f(\omega)| < \delta\}$ for any $\delta > 0$. The coefficients $c_{i,\alpha}$ satisfy

$$c_{i,\alpha} = \frac{(-1)^{i+1}}{i!} \sum_{j=i}^{d-1} \frac{\Gamma^{(j-i)}(\alpha)}{(j-i)!} d_{j+1,\alpha}$$

where $d_{j,\alpha}$ is the coefficient of $(z-\alpha)^{-(j)}$ in the Laurent expansion of $\zeta(z)$.

Example: Monomial Functions

Let
$$f=\omega_1^{\kappa_1}\cdots\omega_d^{\kappa_d}$$
 and $\varphi=\omega_1^{\tau_1}\cdots\omega_d^{\tau_d}$.
$$\int_{[0,\varepsilon]^d}e^{-n\omega^\kappa}\omega^\tau d\omega=Cn^{-\lambda}(\log n)^{\theta-1}$$

Example: Monomial Functions

 $\text{ Let } f = \omega_1^{\kappa_1} \cdots \omega_d^{\kappa_d} \text{ and } \varphi = \omega_1^{\tau_1} \cdots \omega_d^{\tau_d}.$ $\int_{[0,\varepsilon]^d} e^{-n\omega^{\kappa}} \omega^{\tau} d\omega = C n^{-\lambda} (\log n)^{\theta-1}$

• To find (λ, θ) , we study the zeta function

$$\int_{[0,\varepsilon]^d} \omega^{-\kappa z + \tau} d\omega = \left[\frac{\omega_1^{-\kappa_1 z + \tau_1 + 1}}{-\kappa_1 z + \tau_1 + 1} \right]_0^{\varepsilon} \cdots \left[\frac{\omega_d^{-\kappa_d z + \tau_d + 1}}{-\kappa_d z + \tau_d + 1} \right]_0^{\varepsilon}$$

Example: Monomial Functions

 $\text{ Let } f = \omega_1^{\kappa_1} \cdots \omega_d^{\kappa_d} \text{ and } \varphi = \omega_1^{\tau_1} \cdots \omega_d^{\tau_d}.$ $\int_{[0,\varepsilon]^d} e^{-n\omega^{\kappa}} \omega^{\tau} d\omega = C n^{-\lambda} (\log n)^{\theta-1}$

• To find (λ, θ) , we study the zeta function

$$\int_{[0,\varepsilon]^d} \omega^{-\kappa z + \tau} d\omega = \left[\frac{\omega_1^{-\kappa_1 z + \tau_1 + 1}}{-\kappa_1 z + \tau_1 + 1} \right]_0^{\varepsilon} \cdots \left[\frac{\omega_d^{-\kappa_d z + \tau_d + 1}}{-\kappa_d z + \tau_d + 1} \right]_0^{\varepsilon}$$

• Thus, $\lambda = \min_{i} \left\{ \frac{\tau_i + 1}{\kappa_i} \right\}, \ \theta = \# \min_{i} \left\{ \frac{\tau_i + 1}{\kappa_i} \right\}$

where $\# \min S$ is the number of times the minimum is attained in a set S.

Resolution of Singularities

Theorem (Hironaka)

Let f be a real analytic function at the origin with f(0) = 0.

Then, there exists a manifold M, a neighborhood W of the origin and a proper real analytic map $\rho: M \to W$ such that

- ρ is an isomorphism on $M \setminus (f \circ \rho)^{-1}(0)$
- $f \circ \rho$ and $|\rho'|$ are monomial functions locally at each $y \in (f \circ \rho)^{-1}(0)$

Resolution of Singularities

Theorem (Hironaka)

Let f be a real analytic function at the origin with f(0) = 0.

Then, there exists a manifold M, a neighborhood W of the origin and a proper real analytic map $\rho: M \to W$ such that

- ρ is an isomorphism on $M \setminus (f \circ \rho)^{-1}(0)$
- $f \circ \rho$ and $|\rho'|$ are monomial functions locally at each $y \in (f \circ \rho)^{-1}(0)$

Thus, we can find the poles of the zeta function of any f, provided we have a resolution of singularities for f. Finding resolutions is generally a hard problem.

Marginal Likelihood Integral

$$\int_{\Omega} \prod_{i=1}^{k} p_i(\omega)^{nq_i} |\varphi(\omega)| d\omega$$

$$\approx C(\prod_{i=1}^{k} q_i^{q_i})^n n^{-\lambda} (\log n)^{\theta-1}$$

$$\approx C(\prod_{i=1}^k q_i^{q_i})^n n^{-\lambda} (\log n)^{\theta-1}$$

Laplace Integral of Sum of Squares

$$\int_{\Omega} e^{-n\sum_{i=1}^k (p_i(\omega)-q_i)^2} |\varphi(\omega)| d\omega$$

$$\approx C n^{-\lambda} (\log n)^{\theta-1}$$

$$\int \mu^{-\kappa z + \tau} d\mu$$

Hironaka

Zeta Function of Sum of Squares

$$(\lambda, \theta)$$
 is smallest pole of
$$\zeta(z) = \int_{\Omega} |Q(\omega)|^{-z} |\varphi(\omega)| d\omega$$

• $\Omega \subset \mathbb{R}^d$ compact semianalytic subset \mathcal{A}_{Ω} ring of real analytic functions on Ω $I = \langle f_1, \dots, f_r \rangle \subset A_{\Omega}$, φ nearly analytic

- $\Omega \subset \mathbb{R}^d$ compact semianalytic subset \mathcal{A}_{Ω} ring of real analytic functions on Ω $I = \langle f_1, \dots, f_r \rangle \subset A_{\Omega}$, φ nearly analytic
- Consider the zeta function

$$\zeta(z) = \int_{\Omega} \left(f_1(\omega)^2 + \dots + f_r(\omega)^2 \right)^{-z/2} |\varphi(\omega)| d\omega$$

- $\Omega \subset \mathbb{R}^d$ compact semianalytic subset \mathcal{A}_{Ω} ring of real analytic functions on Ω $I = \langle f_1, \dots, f_r \rangle \subset A_{\Omega}$, φ nearly analytic
- Consider the zeta function

$$\zeta(z) = \int_{\Omega} \left(f_1(\omega)^2 + \dots + f_r(\omega)^2 \right)^{-z/2} |\varphi(\omega)| d\omega$$

• Define $\mathrm{RLCT}_{\Omega}(I;\varphi)=(\lambda,\theta)$ where λ is the smallest pole of $\zeta(z)$ and θ its multiplicity. If $\zeta(z)$ does not have any poles, set $(\lambda,\theta)=(\infty,\infty)$.

Call λ the *real log canonical threshold* of $(I; \varphi)$ on Ω .

■ RLCT's are independent of the choice of generators f_1, \ldots, f_r for the ideal I.

- RLCT's are independent of the choice of generators f_1, \ldots, f_r for the ideal I.
- RLCT's are positive rational numbers.

- RLCT's are independent of the choice of generators f_1, \ldots, f_r for the ideal I.
- RLCT's are positive rational numbers.
- RLCT's are local in nature.

$$RLCT_{\Omega}(I;\varphi) = \min_{x \in \mathcal{V}(I)} RLCT_{\Omega_x}(I;\varphi)$$

where each Ω_x is a sufficiently small nbhd of x in Ω and $(\lambda_1, \theta_1) < (\lambda_2, \theta_2)$ if $\lambda_1 < \lambda_2$, or $\lambda_1 = \lambda_2$ and $\theta_1 > \theta_2$.

- RLCT's are independent of the choice of generators f_1, \ldots, f_r for the ideal I.
- RLCT's are positive rational numbers.
- RLCT's are local in nature.

$$RLCT_{\Omega}(I;\varphi) = \min_{x \in \mathcal{V}(I)} RLCT_{\Omega_x}(I;\varphi)$$

where each Ω_x is a sufficiently small nbhd of x in Ω and $(\lambda_1, \theta_1) < (\lambda_2, \theta_2)$ if $\lambda_1 < \lambda_2$, or $\lambda_1 = \lambda_2$ and $\theta_1 > \theta_2$.

• RLCT's depend on the boundary structure of Ω_x .

Formula for disjoint variables

$$RLCT_{X_0 \times Y_0}(I_x + I_y; \varphi_x \varphi_y) = (\lambda_x + \lambda_y, \theta_x + \theta_y - 1)$$

$$RLCT_{X_0 \times Y_0}(I_x I_y; \varphi_x \varphi_y) = \begin{cases} (\lambda_x, \theta_x) & \text{if } \lambda_x < \lambda_y \\ (\lambda_y, \theta_y) & \text{if } \lambda_x > \lambda_y \\ (\lambda_x, \theta_x + \theta_y) & \text{if } \lambda_x = \lambda_y \end{cases}$$

Formula for disjoint variables

$$RLCT_{X_0 \times Y_0}(I_x + I_y; \varphi_x \varphi_y) = (\lambda_x + \lambda_y, \theta_x + \theta_y - 1)$$

$$RLCT_{X_0 \times Y_0}(I_x I_y; \varphi_x \varphi_y) = \begin{cases} (\lambda_x, \theta_x) & \text{if } \lambda_x < \lambda_y \\ (\lambda_y, \theta_y) & \text{if } \lambda_x > \lambda_y \\ (\lambda_x, \theta_x + \theta_y) & \text{if } \lambda_x = \lambda_y \end{cases}$$

Formula for change of variables

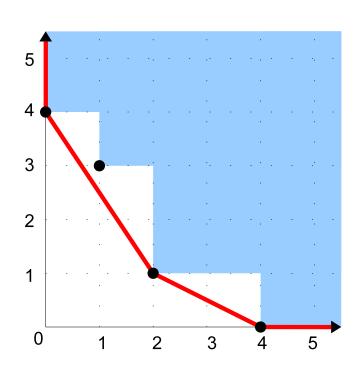
$$RLCT_{\Omega_0}(I;\varphi) = \min_{y \in \rho^{-1}(0)} RLCT_{\rho^{-1}(\Omega_0)_y}(\rho^*I; (\varphi \circ \rho)|\rho'|)$$

• ω_1,\ldots,ω_d local coordinates at the origin I an ideal of real analytic functions at the origin Given power series $f=\sum_{\alpha}c_{\alpha}\omega^{\alpha}$, define $[\omega^{\alpha}]f:=c_{\alpha}$

- ω_1,\ldots,ω_d local coordinates at the origin I an ideal of real analytic functions at the origin Given power series $f=\sum_{\alpha}c_{\alpha}\omega^{\alpha}$, define $[\omega^{\alpha}]f:=c_{\alpha}$
- The Newton polyhedron of I is the convex hull

$$\mathcal{P}(I) = \operatorname{conv}\{\alpha : f \in I, [\omega^{\alpha}] f \neq 0\}$$

$$I = \langle x^4 + x^2y + xy^3 + y^4 \rangle$$
$$J = \langle x^4, x^2y, xy^3, y^4 \rangle$$



- ω_1,\ldots,ω_d local coordinates at the origin I an ideal of real analytic functions at the origin Given power series $f=\sum_{\alpha}c_{\alpha}\omega^{\alpha}$, define $[\omega^{\alpha}]f:=c_{\alpha}$
- The Newton polyhedron of I is the convex hull $\mathcal{P}(I) = \text{conv}\{\alpha: f \in I, [\omega^{\alpha}] f \neq 0\}$
- $au = (au_1, \dots, au_d)$ vector of non-negative integers

 The *distance* $l_{ au}$ is the smallest t such that $t \cdot (au_1 + 1, \dots, au_d + 1) \in \mathcal{P}(I)$

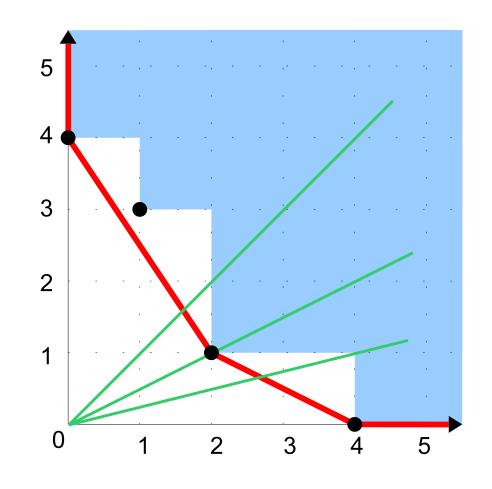
The *multiplicity* θ_{τ} is the codimension of the face of $\mathcal{P}(I)$ at this intersection.

Example: Newton Polyhedra

$$I = \langle x^4 + x^2y + xy^3 + y^4 \rangle$$
$$J = \langle x^4, x^2y, xy^3, y^4 \rangle$$

Both I,J have the same Newton polyhedron.

$$l_{(0,0)} = \frac{8}{5}, \theta_{(0,0)} = 1$$
$$l_{(1,0)} = 1, \theta_{(1,0)} = 2$$
$$l_{(3,0)} = \frac{2}{3}, \theta_{(3,0)} = 1$$



Relation to RLCT

Theorem (L.)

Suppose the origin is not on the boundary of Ω .

Then, when φ is a monomial function ω^{τ} ,

$$RLCT_{\Omega_0}(I; \omega^{\tau}) \leq (1/l_{\tau}, \theta_{\tau}).$$

Equality holds when *I* is a monomial ideal.

Relation to RLCT

Theorem (L.)

Suppose the origin is not on the boundary of Ω .

Then, when φ is a monomial function ω^{τ} ,

$$RLCT_{\Omega_0}(I; \omega^{\tau}) \leq (1/l_{\tau}, \theta_{\tau}).$$

Equality holds when *I* is a monomial ideal.

Remark

Equality also holds for ideals which are nondegenerate (a term due to Varchenko).

Back to Schizophrenic Patients

Learning Coefficients

$$P = (p_{ij}), S_i = \{ \text{rank } i \text{ matrices} \}$$

 $S_{21} = \{ p_{11} = 0; p_{12}, p_{21}, p_{22} \text{ non-zero; up to perm} \} \subset S_2$
 $S_{22} = \{ p_{11} = p_{22} = 0; p_{12}, p_{21} \text{ non-zero; up to perm} \} \subset S_2$

Theorem (L.)

The learning coefficient (λ, θ) of the model is

$$(\lambda, \theta) = \begin{cases} (5/2, 1) & \text{if } P \in S_1, \\ (7/2, 1) & \text{if } P \in S_2 \setminus (S_{21} \cup S_{22}), \\ (4, 1) & \text{if } P \in S_{21} \setminus S_{22}, \\ (9/2, 1) & \text{if } P \in S_{22}. \end{cases}$$

Learning Coefficients

Proof

Four basic techniques:

- 1. Changing generators for the ideal
- 2. Change of variables formula
- 3. Disjoint variables formula
- 4. Newton polyhedra method

(systematically peeling an onion)

Complete First Term Asymptotics

Theorem (L.)

If f is nondegenerate, f(0) = 0 and $f \ge 0$, then

$$\int_{[0,1]^d} e^{-nf(\omega)} \omega^{\tau} d\omega \approx C n^{-\lambda} (\log n)^{\theta}$$

where $(\lambda, \theta) = (1/l_{\tau}, \theta_{\tau})$ and

$$C = \frac{\Gamma(\lambda)}{(\theta - 1)!} \sum_{v \in \mathcal{F}} \prod_{i=1}^{\theta} (v\beta)_i^{-1} \int_{[0,1]^{d-\theta}} g_v(\bar{\mu}) d\bar{\mu}.$$

 $ar{\mu}=(\mu_{\theta+1},\dots,\mu_d), \ ar{e}=e_{\theta+1}+\dots+e_d,$ $g_v(ar{\mu}) \ ext{is} \ f(\mu^v)^{-\lambda}\mu^{v\tau+\alpha-ar{e}} \ ext{evaluated at} \ (0,\dots,0,ar{\mu}),$ \mathcal{F} is a unimodular refinement of the normal fan of $\mathcal{P}(f)$, $\beta(v)$ is the vertex of $\mathcal{P}(f)$ corresponding to v, $\alpha(v)$ is the vector of row sums of v.

Complete First Term Asymptotics

Proposition (L.)

If $\langle f_1(\omega), \dots, f_k(\omega) \rangle$ is a monomial ideal, then $f = \sum_i f_i(\omega)^2$ is nondegenerate.

Proposition (L.)

Let q_1, \ldots, q_k be positive real numbers and $p_1(\omega), \ldots, p_k(\omega)$ be positive real analytic functions such that $p_i(\omega), q_i \geq 0$ and $\sum_i p_i(\omega) = \sum_i q_i = 1$.

If $\langle p_1(\omega) - q_i, \dots, p_k(\omega) - q_k \rangle$ is a monomial ideal, then $f = \sum_i q_i \log \frac{q_i}{p_i(\omega)}$ is nondegenerate.

Take Home

- 1. Compute asymptotics using zeta functions.
- 2. When computing learning coefficients, work with RLCT of *ideals* not *functions*.
- 3. Newton polyhedra methods can be extended to work with monomial *amplitude functions*.

Open Questions:

- 1. The RLCT over Ω is the minimum of RLCT's at $x \in \Omega$. How do we identify points with the minimum RLCT?
- 2. Is there a way to extend Newton polyhedra methods to cases where the origin is on the boundary of Ω ?

Thank you for your kind attention:)

"Asymptotic Approximation of Marginal Likelihood Integrals" Shaowei Lin

http://arxiv.org/abs/1003.5338

http://math.berkeley.edu/~shaowei/rlct.html

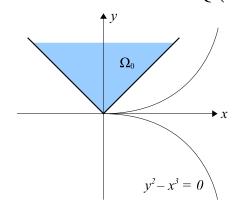
References

- 1. V. I. Arnol'd, S. M. Guseĭn-Zade and A. N. Varchenko: *Singularities of Differentiable Maps*, Vol. II, Birkhäuser, Boston, 1985.
- 2. M. Evans, Z. Gilula and I. Guttman: Latent class analysis of two-way contingency tables by Bayesian methods, *Biometrika* **76** (1989) 557–563.
- 3. H. Hironaka: Resolution of singularities of an algebraic variety over a field of characteristic zero I, II, *Ann. of Math.* (2) **79** (1964) 109–203.
- 4. S. Lin, B. Sturmfels and Z. Xu: Marginal likelihood integrals for mixtures of independence models, *J. Mach. Learn. Res.* **10** (2009) 1611–1631.
- 5. S. Lin: Asymptotic Approximation of Marginal Likelihood Integrals, in preparation.
- 6. S. Watanabe: *Algebraic Geometry and Statistical Learning Theory*, Cambridge Monographs on Applied and Computational Mathematics **25**, Cambridge University Press, Cambridge, 2009.

Example: Boundary Structure

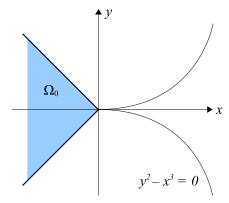
Let
$$I = \langle y^2 - x^3 \rangle$$
 and $\varphi = 1$.

• Case 1: $\Omega_0 = \{(x,y) \in \mathbb{R}^2 : 0 \le y \le \varepsilon, -y \le x \le y\}$



$$\mathrm{RLCT}_{\Omega_0}(I;\varphi) = (1,1)$$

• Case 2: $\Omega_0 = \{(x,y) \in \mathbb{R}^2 : -\varepsilon \le x \le 0, x \le y \le -x\}$



$$\mathrm{RLCT}_{\Omega_0}(I;\varphi) = (\frac{5}{6},1)$$

Disjoint Variables

Suppose we have disjoint sets of variables

$$x = (x_1, \dots, x_m) \qquad y = (y_1, \dots, y_n)$$

$$I_x = \langle f_1(x), \dots, f_r(x) \rangle \qquad I_y = \langle g_1(y), \dots, g_s(y) \rangle$$

$$(\lambda_x, \theta_x) = \text{RLCT}_{X_0}(I_x; \varphi_x) \quad (\lambda_y, \theta_y) = \text{RLCT}_{Y_0}(I_y; \varphi_y)$$

• Recall $I_x + I_y = \langle f_i, g_j \text{ for all } i, j \rangle$, $I_x I_y = \langle f_i g_j \text{ for all } i, j \rangle$

Proposition

$$RLCT_{X_0 \times Y_0}(I_x + I_y; \varphi_x \varphi_y) = (\lambda_x + \lambda_y, \theta_x + \theta_y - 1)$$

$$RLCT_{X_0 \times Y_0}(I_x I_y; \varphi_x \varphi_y) = \begin{cases} (\lambda_x, \theta_x) & \text{if } \lambda_x < \lambda_y \\ (\lambda_y, \theta_y) & \text{if } \lambda_x > \lambda_y \\ (\lambda_x, \theta_x + \theta_y) & \text{if } \lambda_x = \lambda_y \end{cases}$$

Change of Variables

- change of variables outside $\mathcal{V}(I)$ i.e. $\rho: M \to W$ is a proper real analytic map from a manifold M to a neighborhood W of the origin that is an isomorphism on $M \setminus \rho^{-1}(\mathcal{V}(I))$

$$\rho^*I = \langle f_1 \circ \rho, \dots, f_r \circ \rho \rangle, \mathcal{M} = \rho^{-1}(\Omega_0)$$

Proposition

$$RLCT_{\Omega_0}(I;\varphi) = \min_{y \in \rho^{-1}(0)} RLCT_{\mathcal{M}_y}(\rho^*I; (\varphi \circ \rho)|\rho'|)$$

Recall $p_{ij}(t,a,b,c,d) = ta_i b_j + (1-t)c_j d_j$. Consider $t^* = \frac{1}{2}$ and $a^* = b^* = c^* = d^* = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$. Denote $\omega = (t,a,b,c,d)$ and $\omega^* = (t^*,a^*,b^*,c^*,d^*)$.

Let $I = \langle p_{ij}(\omega + \omega^*) - p_{ij}(\omega^*) \rangle$ and $\varphi = 1$. We want to find $\mathrm{RLCT}_{\Omega_{\omega^*}}(I;\varphi)$.

Note that ω^* is not on the boundary of Ω .

Now, $\varphi = 1$ and I is generated by

$$p_{ij}(\omega + \omega^*) - p_{ij}(\omega^*)$$
 for all $i, j \in \{1, 2, 3\}$

Now, $\varphi = 1$ and I is generated by

$$p_{ij}(\omega + \omega^*) - p_{ij}(\omega^*) \text{ for all } i, j \in \{1, 2, 3\}$$

Note that

$$p_{i1} + p_{i2} + p_{i3} = ta_i + tc_i =: p_{i0}$$

 $p_{1j} + p_{2j} + p_{3j} = tb_j + td_j =: p_{0j}$

Let $g_{ij}(\omega)$ denote $p_{ij}(\omega + \omega^*) - p_{ij}(\omega^*)$.

Now, $\varphi = 1$ and I is generated by

 $g_{ij}(\omega)$ for all $i, j \in \{0, 1, 2\}$

Now, $\varphi=1$ and I is generated by $g_{ij}(\omega)$ for all $i,j\in\{0,1,2\}$

For
$$i, j \in \{1, 2\}$$
, we replace $g_{ij}(\omega)$ with $g_{ij}(\omega) - (d_j + d_j^*)g_{i0}(\omega) - (a_i + a_i^*)g_{0j}(\omega)$

Now, $\varphi = 1$ and I is generated by

```
g_{01}(\omega)
g_{02}(\omega)
g_{10}(\omega)
g_{20}(\omega)
g_{11}(\omega) - (d_1 + d_1^*)g_{10}(\omega) - (a_1 + a_1^*)g_{01}(\omega)
g_{12}(\omega) - (d_2 + d_2^*)g_{10}(\omega) - (a_1 + a_1^*)g_{02}(\omega)
g_{21}(\omega) - (d_1 + d_1^*)g_{20}(\omega) - (a_2 + a_2^*)g_{01}(\omega)
g_{22}(\omega) - (d_2 + d_2^*)g_{20}(\omega) - (a_2 + a_2^*)g_{02}(\omega)
```

Now, $\varphi = 1$ and I is generated by

```
g_{01}(\omega)
g_{02}(\omega)
g_{10}(\omega)
g_{20}(\omega)
g_{11}(\omega) - (d_1 + d_1^*)g_{10}(\omega) - (a_1 + a_1^*)g_{01}(\omega)
g_{12}(\omega) - (d_2 + d_2^*)g_{10}(\omega) - (a_1 + a_1^*)g_{02}(\omega)
g_{21}(\omega) - (d_1 + d_1^*)g_{20}(\omega) - (a_2 + a_2^*)g_{01}(\omega)
g_{22}(\omega) - (d_2 + d_2^*)g_{20}(\omega) - (a_2 + a_2^*)g_{02}(\omega)
```

Expanding these polynomials, we get...

Now, $\varphi = 1$ and I is generated by

$$c_{1}(\frac{1}{2} - t) + a_{1}(t + \frac{1}{2})$$

$$c_{2}(\frac{1}{2} - t) + a_{2}(t + \frac{1}{2})$$

$$d_{1}(\frac{1}{2} - t) + b_{1}(t + \frac{1}{2})$$

$$d_{2}(\frac{1}{2} - t) + b_{2}(t + \frac{1}{2})$$

$$a_{1}d_{1}$$

$$a_{1}d_{2}$$

$$a_{2}d_{1}$$

$$a_{2}d_{2}$$

Now, $\varphi = 1$ and I is generated by

$$c_{1}(\frac{1}{2} - t) + a_{1}(t + \frac{1}{2})$$

$$c_{2}(\frac{1}{2} - t) + a_{2}(t + \frac{1}{2})$$

$$d_{1}(\frac{1}{2} - t) + b_{1}(t + \frac{1}{2})$$

$$d_{2}(\frac{1}{2} - t) + b_{2}(t + \frac{1}{2})$$

$$a_{1}d_{1}$$

$$a_{1}d_{2}$$

$$a_{2}d_{1}$$

$$a_{2}d_{2}$$

Substitute $b_i = \frac{b_i' - d_i(\frac{1}{2} - t)}{t + \frac{1}{2}}$, $c_i = \frac{c_i' - a_i(t + \frac{1}{2})}{\frac{1}{2} - t}$.

The Jacobian determinant of this change of variable is 16.

Now, $\varphi = 16$ and I is generated by

$$c'_1, c'_2, b'_1, b'_2, a_1d_1, a_1d_2, a_2d_1, a_2d_2$$

Now, $\varphi = 16$ and I is generated by

$$c'_1, c'_2, b'_1, b'_2, a_1d_1, a_1d_2, a_2d_1, a_2d_2$$

This is a monomial ideal so we may use the Newton polyhedra method to compute its RLCT.

Alternatively, we can apply the formula for disjoint variables.

$$I = \langle c_1' \rangle + \langle c_2' \rangle + \langle b_1' \rangle + \langle b_2' \rangle + \left(\langle a_1 \rangle + \langle a_2 \rangle \right) \left(\langle d_1 \rangle + \langle d_2 \rangle \right)$$

Now, $\varphi=16$ and I is generated by

$$c'_1, c'_2, b'_1, b'_2, a_1d_1, a_1d_2, a_2d_1, a_2d_2$$

This is a monomial ideal so we may use the Newton polyhedra method to compute its RLCT.

Alternatively, we can apply the formula for disjoint variables.

$$I = \langle c_1' \rangle + \langle c_2' \rangle + \langle b_1' \rangle + \langle b_2' \rangle + \left(\langle a_1 \rangle + \langle a_2 \rangle \right) \left(\langle d_1 \rangle + \langle d_2 \rangle \right)$$

Conclusion: $RLCT_{\Omega_{\omega^*}}(I;\varphi) = (6,2)$