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A Coin Toss Integral

For large IV, approximate

Z(N) = /[0 1]2(1 — 22y?)N2 dady.

e Write Z(N) as [ e N/ @Y dxdy where

f(ay) = — log(1 — 2*?).

e Can we use the Gaussian integral

d/2
/ . ];,( : ...-|-w62l)d - (2_”)
R4 N

by finding a suitable change of coordinates for x, y?
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() small nbhd of origin, f : {2 — R analytic function with unique
minimum £ (0) at origin, O*f Hessian of f. If det 9% f(0) # 0,

o —Nf(w - _—Nf(0 (QW)d —d/2
Z(N) = Le FWaw ~ e f().\/det82f(0).N /2

e e.g. Bayesian Information Criterion (BIC)
a d

( Z log q*(Xz-)> +35 log N
i=1

e e.g. Stirling’s approximation

N! — NN+1/OO€—N(x_Ing)d£C ~ NN_He_N QNTF
0 \/

However, we cannot apply the Laplace approximation to our example
because det 9%f(0) = 0.

—log Z(N) =~
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Asymptotic theory (Arnol'd-Gusein-Zade-Varchenko, 1985)
states that for a Laplace integral,

Z(N) = /Q e NI @ (w)dw = eV . CN"(log NP1

asymptotically as /N — oo for some positive constants
CeR,NeQ,0 € Zandwhere f* = mingeq f(w).
The pair (A, ) is the real log canonical threshold of f(w)
with respect to the measure p(w)dw.

Upper bound (trivial) A <

Upper bound (Watanabe) A < =( codim of minimum locus of f )

NI DN,
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Z(N) = /Qe_Nf(w)go(w)dw ~ e N L.CN"log N)?!

Many integrals in statistics, physics and information theory can be
written in the form above. As N — 00, the asymptotic behavior of
the integral depends on the minimum locus of f(w).
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Notation: w" = wi™ - - - w/*.
Asymptotic theory of Arnol'd, Gusein-Zade and Varchenko (1974).

Theorem (AGV). Given K, T € Zéo,

2= /R

where (' is a constant,
. T =F 1
A = min :
() K;

e N WTdw ~ CN*(log N)?1

6 = number of times minimum is attained.

Proof idea : Zeta functions ((z) and state density functions v ().

) = [ @I e, w0 =5 [
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To resolve a singularity is to find a change of variables so that
after the transformation, the singularities are “nice” intersections.

A famous deep result of Hironaka (1964) says that every variety has
a resolution of singularities (also known as a desingularization).
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Let @ C R%and f : Q — R real analytic function.

® Coin Toss

e Laplace

o RLCT e Wesayp: U — () desingularizes f if

e Geometry

° M°”°miT'S 1. U is a d-dimensional real analytic manifold covered

e Desingularizations ]

o Algorithm by coordinate patches Uy, . .., Us (=~ subsets of R%).
e Higher Order

Singular Learning 2. pis a proper real analytic map that is an isomorphism
RLCTs onto the subset {w € Q2 : f(w) # 0}.

Computations

3. For each restriction p : U; — (),

fop(p)=a(p)p®, detdp(p)=>bu)u
where a() and b(u) are nonzero on Us.

e The preimage {y : f o p(u) = 0} of the variety
{w: f(w) = 0} has simple normal crossings
This preimage is also called the transform .
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We know how to find RLCTs of monomial functions (AGV, 1985).

/ e NI (T dp ~ CN M log N)?~!
Q

where A = min; it 9 = |{;: Tt = )],

Ki ki
To compute the RLCT of any function f(w):

1. Find minimum f* of f over (2.

2. Find a desingularization p for f — f*.

3. Use AGV Theorem to find ()\;, 8;) on each patch Uj.
4. A =min{\;}, 0 = max{6; : \; = \}.

The difficult part is finding a desingularization,
e.g (Bravo-Encinas-Villamayor, 2005).
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If we are able to desingularize f(z,y) = —3 log(1 — z%y?),
the higher order asymptotics of Z (V) can also be derived.

A 1 1
N~z log N —4 /= —2log2 —~v | N2
\/7 08 \ 8 (logQ e 7)

1
——N Hog N - 1—~ N1
4 05 +4 (logQ + 7)
/2 /2 1 10
VNS log N + Y21 —2log2— — —~ |N~3
128 128 \ log?2 3
1
_— N2
24 v

Euler-Mascheroni

constant y = lim ( — log n) ~ 0.5772156649.

]
x| =

k=1
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Sumio Watanabe

Integral Asymptotics Many models used in machine learning are singular
e e.g. normal mixtures, neural networks, hidden markov models,
® Sumio Watanabe _ ] ] ]
e Statistical Model but their asymptotic behavior is poorly understood.
@ Learning Coefficient
e Geometry

| rortar i e s ot s e |
e Standard Form
® Fiber Ideals
® Examples Algebraic Geometry and

Statistical Learning

RLCTs Theory
Computations

In 1998, Sumio Watanabe discovered how to solve this problem
using Hironaka’'s theorem on the resolution of singularities.
Algebraic geometry is essential in the analysis of singular models.
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Statistical Model

| i . .
P X  random variable with state space R*
Singular Learning A - . c - Rk
. space of probability distributions on
e Statistical Model
e Learning Coefficient M C /A statistical model le .. 7XN Sample of X
e Geometry . . .
o Standard Form () parameter space g € M true distribution of X
® Fiber ideals p(z|w)  distribution atw € 2
® Examples

@(w)dw  prior distribution on €2

RLCTs

Computations

Log likelihood rati 1
og likelihood ratio Zog X\w
. . B q(z)
Kullback-Leibler function K (w) = q(x)log dx
RF p(z|w)

N
Likelihood integral ZN = / Hp(Xz-\w) o(w)dw
Q-
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Define empirical entropy Sy = — & Z , log q(X;).
Then, we can rewrite the likelihood mtegral as

ZN = e_NSN/ e NVEN @) o (w)dw.
Q

Convergence of stochastic complexity (Watanabe)
The stochastic complexity has the asymptotic expansion

—log Zn = NSy + M\glog N — (0, — 1)loglog N + F#

where F]{? converges in law to a random variable. Moreover,
Ag, 0, are asymptotic coefficients of the deterministic integral

Z(N) = /ﬂe_NK(w)gp(w)dw ~ CN i (log N)¥a—1,

Think of this as generalized BIC for singular models.
Ag; 0y learning coefficient (and its order) of the model M at q.
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Define log likelihood ratio. Note that its expectation is K (w).

Ky (w) = % SN log p((lgji) .

Standard Form of Log Likelihood Ratio (Watanabe)

Suppose p : 4 — () desingularizes K (w). Then,

o \/%M'{fzv(u)

where £ (1) converges in law to a Gaussian process on .7 .

Ky op(p) =p

Think of this as generalized CLT for singular models.

Classical central limit theorem (CLT):

1 1
sample mean = — Zfil X, =u+ —0én

N VN

where & converges in law to standard normal distribution.
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How do we desingularize K (w) = [, ¢(x)log %daz?

e Algorithms (e.g. Bravo-Encinas-Villamayor) intractable
e Many models parametrized by polynomials. Exploit this?

Regularly parametrized functions

e Afunction f : {2 — Ris regularly parametrized if it factors
0O-5U-LR
where U C R¥ nbhd of origin, u is polynomial, g has unique

minimum ¢(0) = 0 at the origin and det 9%¢(0) # 0.
e For such functions, define fiber ideal

I'=(ui(w), ..., up(w)) C Rlws, ..., wql.
The variety V(1) is the fiber f~1(0).

Equivalence (Watanabe) RLCT of f = RLCT of u% + -+ uz
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05U -5LR

Laplace Approximation . When f is the sum-of-squares
f=wi+... +uws,
we let g be f and u be the identity map. The fiber ideal is

I =(wi,...,wq).

Coin Toss Integral . In one of our earlier examples

1
f — _5 1Og(1 o 332y2),

letu(z,y) = zy, g(u) = —3 log(1 — u?). The fiber ideal is

I = (xy).
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e Discrete Models . Given true distribution p € M and state
probabilities p(7|w), the Kullback-Leibler distance K (w) factors

K:Q-25 A LR

where k e

g(p) = _pi)log PLi)

= p(i)

and det 902 ¢ is nonzero at p. The fiber ideal is
Iy = (p(llw) = p(1), ..., p(klw) — p(k)).

e Gaussian models . Given true distribution N (f, f]) and model
distributions NV (u(w), X (w)), the Kullback-Leibler function
K (w) is also regularly parametrized. The fiber ideal is

I ¢ = (pi(w) — fii, Big(w) — Bij)ij
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Ideal (y — x?%, z — x3)

set of polynomials generated
by y — z2 and z — 23 via
addition and polynomial-scaling

i
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Variety V(y — 22, z — 2°)

set of points where polynomials
In the ideal evaluate to zero

&5

i

e
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P
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In linear algebra, we solve linear equations by

computing a row echelon form using Gaussian elimination.
In algebraic geometry, we solve polynomial equations by
computing a Grobner basis using Buchberger’s algorithm.

Textbook : “Ideals, Varieties, and Algorithms,” Cox-Little-O’Shea.
Software : Macaulay2, Singular, Maple, etc.
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Givenideal I = (fi(w), ..., fr(w)) C Rlwy,...,wq],
polynomial ¢ (w), semialgebraic 2 C R¢.

The real log canonical threshold (A, #) of I at x € (2 satisfies
/ e~ NUi++F) p(w)dw ~ CN~M?(log N1
Qg

for suff small nbhd €2, of x in £2. Denote (A, 0) = RLCTq_(I;¢).

Properties

e Definition is independent of choice of generators f1, ..., f.
e )\ positive rational number, 6 positive integer.

e Depends on structure of boundary 0€2 if x € 0.

e Order the (A, 0) by the value of N*(log V)~ for large V.
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e Discrete models with state probabilities p(i|w).
Fiber ideal at a true distribution p

Iy = (p(ilw) — p(i))i

e Gaussian models with mean p(w) and covariance X (w).
Fiber ideal at a true distribution N (i, X2)

I ¢ = (i(w) — i, Xij(w) — Bij)i

Learning coefficients and RLCTs of fiber ideals (L.)

If the true distribution ¢ is in the model,
then the learning coefficient (\y, ;) is given by

2, 0,) = min RLCTq (I,:
(2A¢,04) i Qe (Lg5 ©)

where [, is the fiber ideal at ¢ and V(1,;) C 2 is the fiber over g.
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e.g. Let [ = (2% 2%y, zy?, y*) and 7 = (1, 1).

Newton polyhedron T-distance

The 7-distance is [, = 8/5 and the multiplicity is 6, = 1.
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e.g. Let [ = (2% 2%y, zy?, y*) and 7 = (2, 1).

Newton polyhedron T-distance

The T-distance is [ = 1 and the multiplicity is 6, = 2.
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Given anideal I C Rfw,...,wy],

1. Plot @ € R? for each monomial w® appearing in some f el
2. Take the convex hull P () of all plotted points.

This convex hull P(I) is the Newton polyhedron of .

Given a vector T € Zio, define

1. T7-distance [, = min{t : t7 € P(I)}.
2. multiplicity 8, = codim of face of P(1I) at this intersection.

Upper bound and equality for RLCT (L.)
If .- is the T-distance of P () and 6 is its multiplicity, then

RLCTq, (I;w™ 1) < (1/1+,6,).

Equality occurs when [ is a monomial ideal.




-1

Integral Asymptotics

Integral Asymptotics

Singular Learning

RLCTs

® |deals- Varieties

® RLCTs of Ideals

® Discrete-Gaussian
e Geometry

e Distance - Multiplicity
e Upper Bounds

® Integral Asymptotics

Computations

Bayesian Information Criterion  (BIC)

When the model is regular, the fiber ideal is I = (w1, ..., wq).
Using Newton polyhedra, RLCT(I) = (d, 1) (exercise).

By Watanabe’s theorem, the likelihood integral Z,, is asymptotically

d
—logZny =~ NSy + ilogN.

Coin Toss Integral

Z(N) = /[0 1]2(1 — 22y*)N? dady.

Earlier, we saw that the fiber ideal for this integral is I = (zy).
Using Newton polyhedra, RLCT(I) = (1, 2) (exercise).
Therefore, for some C' > 0, the integral Z (N ) is asymptotically

Z(N) ~ CN~Y2]log N
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® Schizo Patients
e Model Definition
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e Grobner Basis
e Monomialization
e Automation

Macaulay?2
Computations
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132 Schizophrenic Patients (Evans -Gilula -Guttman)
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RLCTs

Computations

® Schizo Patients
e Model Definition
e Fiber Ideal

e Grobner Basis
e Monomialization
e Automation

Naive Bayes network with 2 ternary variables, 2 hidden states.
Model parametrized in w = (¢, a1, as, ..., ds) by

ta,gbl —|— (1 — t)Cle tCLQbQ —|— (1 — t)CQdQ tagbg —|— (1 — t)62d3

ta1b1 —|— (1 — t)Cldl tCleQ —|— (1 — t)CldQ ta1b3 —|— (1 — t)C1d3
p o ta3b1 + (1 — t)C3d1 tagbg -+ (1 — t)C3d2 ta3b3 + (1 — t)C3d3

Assume true distribution p;; = % forall z, j.

Compute RLCT of fiber ideal

I = {p11(w) —p,...,p33(w) —p) /N

atthe point» = (5, %, %,...,35) € V(I).| '3

Computations using our library asymptotics.m2 show that
RLCT4(I;1) = (6,2).

All other learning coefficients can be computed in this fashion.

).
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® Schizo Patients
® Model Definition
e Fiber Ideal

e Grobner Basis
e Monomialization

@ Automation

il

o7 :

Macaulay2, version 1.4
with packages: ConwayPolynomials, Elimination,

IntegralClosure, LLLBases,
PrimaryDecomposition, ReesAlgebra,
TangentCone

: load "asymptotics.m2";
i2
i3 :
id
ib5 :
i6 :
i7

= QQ[t,al,a2,bl,b2,cl1,c2,d1,d2];

= matrix {{al,a2,1-al-a2}};

matrix {{b1,b2,1-b1-b2}};

= matrix {{cl,c2,1-cl1-c2}};

= matrix {{d1,d2,1-d1-d2}};

= tx(transpose A)*B + (1-t)*(transpose C)*D;
3 3

Matrix R <--- R

o QW e X
I
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® Schizo Patients
e Model Definition
e Fiber Ideal

e Grobner Basis
e Monomialization

e Automation

Maps for shifting the origin to w and evaluating a polynomial at w.

i8 : shift = map(R,R,{t+1/2,a1+1/3,a2+1/3,b1+1/3,b2+1/3,
cl+1/3,c2+1/3,d1+1/3,d2+1/3});
map(R,R,{1/2,1/3,1/3,1/3,1/3,

1/3,1/3,1/3,1/3});

19 : eval =

The true distribution.

110 : eval P

010 = {-1} | 1/9 1/9 1/9 |
{-1}+ | 1/9 1/9 1/9 |
{-1} | 1/9 1/9 1/9 |

The fiber ideal

i11 : I =

ol1l Ideal

of R

ideal (shift P - eval P);
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Grbbner Basis

Integral Asymptotics Grobner basis of the fiber ideal.

Singular Learning

RLCTs 112 : I = ideal gens gb I

SN 012 = ideal (a2*d2, al*d2, b2*%dl - blx*d2, a2*dl, alxdil,
putations

e Schizo Patients b2*c2, bl*c2, b2xcl, bl*xcl, a2%cl - al*c2,

°MWHD&WM” 2t*b2 - 2t*d2 + b2 + d2, 2t*bl - 2t*dl + bl + di,

® Fiberideal - 2t*a2 - 2t*c2 + a2 + c2, 2t*al - 2t*cl + al + ci,

e Grobner Basis

e Monomialization 2t*C2*d2 - C2*d2, 2t*C1*d2 - C1*d2,

e Automation 2t*xc2*xdl - c2*xdl, 2t*xclxdl - clx*xdl)

Preliminary upper bound of the RLCT.

i13 : RLCT(I,1)
[RLCT] Warning: Output RLCT is an upper bound.

ol3 = (8, 1)

To compute the RLCT, we transform [ into a monomial ideal.
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Grbbner Basis

Integral Asymptotics Grobner basis of the fiber ideal.

Singular Learning

RLCTS 112 : I = ideal gens gb I

SN 012 = ideal (a2*d2, al*d2, b2*%dl - blx*d2, a2*dl, alxdil,
putations

e Schizo Patients b2*c2, bl*c2, b2xcl, bl*xcl, a2%cl - al*c2,

® Model Definition 2t*b2 - 2t*d2 + b2 + d2, 2t*bl - 2t*dl + bl + di,

e Fiber Ideal

2t*a2 - 2t*c2 + a2 + c2, 2t*al - 2t*cl + al + cli,
e Monomialization 2t*C2*d2 - C2*d2, 2t*C1*d2 - C1*d2,
e Automation 2t*xc2*xdl - c2*xdl, 2t*xclxdl - clx*xdl)

e Grobner Basis

The red generator prevents / from being a monomial ideal.
Replace it with new indeterminate (35 via the change of variable
B B — (1 — 2t)ds

14 2¢
which is a real-analytic isomorphism near the origin.

b2

We can also accomplish this by introducing a new polynomial
— B9 + 2tby — 2tdy + by + ds to the ideal and eliminating bs.
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Monomialization

Singular Learning

RLCTs

Perform similar transformations to a1, as, b1, bs.

Computations

® Schizo Patients
e Model Definition
e Fiber Ideal

e Grobner Basis
e Monomialization

@ Automation

114
115 :
i16 :

117
ol7 =

R1 = QQ[t,al,a2,bl,b2,c1,c2,d1,d2,bbl,bb2,ccl,cc2];
1iftR1 = map(R1,R,{t,al,a2,bl,b2,c1,c2,d1,d2});
I1 = (1iftR1 I) + ideal(

-bb2 + 2%t*b2 - 2*%t*xd2 + b2 + d2,
-bbl + 2*%t*xbl - 2*%txdl + bl + di,
—-cc2 + 2%t*xa2 - 2*%t*c2 + a2 + c2,
-ccl + 2xt*al - 2*t*xcl + al + cl);

I1 = eliminate({c1,c2,b1,b2},I1)
ideal (cc2, ccl, bb2, bbil,
a2*xd2, alxd2, a2*xdl, alxdil)

Finally, we have a monomial ideal so we can compute its RLCT.

118 :

RLCT(I1,1)

ol8 = (6, 2)




-1

Integral Asymptotics

Singular Learning

RLCTs

Computations

® Schizo Patients
e Model Definition
e Fiber Ideal

e Grobner Basis
e Monomialization

@ Automation

Automation

This analysis can be automated somewhat using the following
algorithms from asymptotics.m2.

i21 : I1 = simplifyRegularParameters I

021 ideal (al, a2, bl, b2,
2t*xc2*d2 - c2*d2, 2t*clxd2 - cl1x*d2,
2t*xc2xdl - c2*dl, 2t*clxdl - c1lx*dl)

122 : removeUnitComponents Il
022 ideal (b2, bl, a2, al, c2*d2, ci1*d2, c2*dl, cilxdl)

For more information about this Macaulay?2 library:

http://math.berkeley.edu/~shaowei/rlct.html
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“Algebraic Methods for Evaluating Integrals in Bayesian Statistics”
http://math.berkeley.edu/~shaowei/swthesis.pdf
(PhD dissertation, May 2011)
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Coin Toss Integral

Integral Asymptotics

The integral Z(N) with f(z,y) = —5 log(1 — z?y*) comes from

Singular Learning

LT the coin toss model parametrized by

Computations

p1(w,£) = %t+(1—t)w
po(w, 1) = %t (=D —w)

where the Kullback-Leibler function at the distribution (ql, QQ)

q2
P2 (U), t) .

q1

p1(w,t)

The function f(z,y) comes from K (x,y) atq, = g2 = 1/2
and substitutingw = (1 +)/2,t =1 —y.

K(wv t) — q1 log

+ g2 log




-1

Integral Asymptotics

Nondegenerate ldeals

Singular Learning

RLCTs

Computations

Let [w®] f denote coefficient of monomial w® in polynomial f.

Given v C R? and poly £, define face poly f, = ey (W f)w®.
Given v C R? and ideal I, define face ideal I, = (f, : f € I).

We say [ is sos-nondegenerate if for all compact faces v C P(I),
the real variety V(1) does not intersect the torus (R*)%.

Remark sos = sum-of-squares. Saia has similar notion of
nondegeneracy for ideals of complex formal power series.

Proposition (L.) If I = (fi,..., f,) and -y is a compact face
of the Newton polyhedron P (1), then Iy = (fiv,-- -, frv)-

Proposition (L.) RLCT(I;w™ 1) = (1/1,,0;) if I is sos-ndg.

Proposition (Zwiernik)  Monomial ideals are sos-ndg.
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Let F be a smooth polyhedral fan supported on the orthant ]Rio.
[smooth: each cone is generated by a subset of some basis of Zd]

Recall that we can associate to ., a toric variety P(F) covered by
open affines U, ~ R%, one for each maximal cone o of F.

We also have a blowup map pr : P(F) — R? described by
monomial maps pr s : Uy — R?, 11 — ¥, on the open affines.
[The columns of the matrix v are minimal generators of the
maximal cone o, and (u”); = p** where v; is the ith row of v.]

Proposition (L.) :

Given a fiber ideal I, let / be a smooth refinement of the normal
fan of the Newton polyhedron P(I). If I is sos-nondegenerate, then
the toric blowup pr : P(F) — R? desingularizes f.
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Given a regularly parametrized function f = gou : 2 — R,
we want to exploit the polynomiality in w in desingularizing f.
Let I = (uy,...,ux) be the polynomial fiber ideal.

Given p : M — €, define pullback p*I = (uj 0 p, ..., ur o p).

1. Monomialization (polynomial):
Findamap p : M — €2 which monomializes 1,
i.e. p*I is a monomial ideal in each patch of M.
Use algorithm of Bravo-Encinas-Villamayor.

2. Principalization (combinatorial):
Find amap 7 : .# — M which principalizes J = p*1,
i.e. n*J is generated by one monomial in each patch of .Z .
Use toric blowups or Goward’s principalization map.

Theorem (L.)  The composition p o 1) desingularizes f.
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Evans-Gilula-Guttman(1989) studied schizophrenic patients for
connections between recovery time (in years Y') and frequency
of visits by relatives.

2<Y <10 10<Y <20 20<Y Totals

Regularly 43 16 3 62
Rarely 0 11 10 27
Never 9 18 16 438
Totals 58 45 29 132

They wanted to find out if the data can be explained by a naive
Bayesian network with two hidden states (e.g. male and female).
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Model parametrized by (¢, a, b, c,d) € A1 xAgxAgxXAgxAs.

2<Y <10 10<Y <20 20<Y
Regularly  tai1bi + (1 — t)Cldl ta1bo + (1 — t)Cldg ta1bs + (1 — t)Cldg
Rarely tasby + (1 — t)Cle taoboy + (1 — t)CQdQ tasbs + (1 — t)Cng
Never tasby + (1 — t)C3d1 taszbs + (1 — t)ngQ taszbs + (1 — t)63d3

We compute the marginal likelihood of this model, given the
above data and a uniform prior on the parameter space.

Lin-Sturmfels-Xu(2009) computed this integral exactly.
It is the rational number with numerator

278019488531063389120643600324989329103876140805
285242839582092569357265886675322845874097528033
99493069713103633199906939405711180837568853737

and denominator

12288402873591935400678094796599848745442833177572204
50448819979286456995185542195946815073112429169997801
33503900169921912167352239204153786645029153951176422
43298328046163472261962028461650432024356339706541132
34375318471880274818667657423749120000000000000000.
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We want to approximate the integral using asymptotic methods.
The EM algorithm gives us the maximum likelihood distribution

43.002 15.998  3.000
5.980 11.123  9.897
9.019 17.879 16.102

1

ERED

Compare this distribution with the data

43 16 3
6 11 10
9 18 16

Use ML distribution as true distribution for our approximations.
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132 Schizophrenic Patients: Asymptotic Approximation

Singular Learning

RLCTs

Computations

Recall that stochastic complexity = — log (marginal likelihood).

The BIC approximates the stochastic complexity as

9
NSy + §logN.

By computing the RLCT of the fiber ideal, our approximation is

Summary:

7
NSy + §logN.

Stochastic Complexity

Exact 273.1911759
BIC 278.3558034
RLCT 275.9144024
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ZN = /Qsz'j(w)U” p(w)dw

Using Watanabe’s Singular Learning Theory,
—log Zn ~ — Z Uijlog qij + Aglog N — (6, — 1) loglog N
,J
where the learning coefficient (A,, 6,) is given by

( (5/2,1) if rankq =1,
O 6) = 1 (7/2,1) ifrankq=2,q¢;2§;U[Q>5]a
9> 7q (4,1) if rankg=2,qe[2 %] \[25]
\ (9/2,1) if rankg =2, g € [2 5]

Here, q € |
q € |

| if for some 4, j, g¢;; = 0 and ¢;5 q;ji qj; # 0,
| if for some 4, j, gii = ¢j; = 0 and ¢;; qj; # 0.

XOo XO

X
X
X
0
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