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For large N , approximate

Z(N) =

∫

[0,1]2
(1− x2y2)N/2 dxdy.

• Write Z(N) as
∫

e−Nf(x,y)dxdy where

f(x, y) = −1

2
log(1− x2y2).

• Can we use the Gaussian integral

∫

Rd

e−
N
2
(ω2

1
+···+ω2

d
)dω =

(

2π

N

)d/2

by finding a suitable change of coordinates for x, y?
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Ω small nbhd of origin, f : Ω → R analytic function with unique
minimum f(0) at origin, ∂2f Hessian of f . If det ∂2f(0) 6= 0,

Z(N) =

∫

Ω
e−Nf(ω)dω ≈ e−Nf(0) ·

√

(2π)d

det ∂2f(0)
·N−d/2.

• e.g. Bayesian Information Criterion (BIC)

− logZ(N) ≈
(

−
N
∑

i=1

log q∗(Xi)

)

+
d

2
logN

• e.g. Stirling’s approximation

N ! = NN+1

∫ ∞

0
e−N(x−log x) dx ≈ NN+1e−N

√

2π

N

However, we cannot apply the Laplace approximation to our example
because det ∂2f(0) = 0.
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Asymptotic theory (Arnol’d·Guseı̆n-Zade·Varchenko, 1985)
states that for a Laplace integral,

Z(N) =

∫

Ω
e−Nf(ω)ϕ(ω)dω ≈ e−Nf∗ · CN−λ(logN)θ−1

asymptotically as N → ∞ for some positive constants
C ∈ R, λ ∈ Q, θ ∈ Z and where f∗ = minω∈Ω f(ω).

The pair (λ, θ) is the real log canonical threshold of f(ω)
with respect to the measure ϕ(ω)dω.

Upper bound (trivial) λ ≤ d
2

Upper bound (Watanabe) λ ≤ 1
2( codim of minimum locus of f )
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Z(N) =

∫

Ω
e−Nf(ω)ϕ(ω)dω ≈ e−Nf∗ · CN−λ(logN)θ−1

Many integrals in statistics, physics and information theory can be
written in the form above. As N → ∞, the asymptotic behavior of
the integral depends on the minimum locus of f(ω).

f(x, y) = x2 + y2

(λ, θ) = (1, 1)

f(x, y) = (xy)2

(λ, θ) = ( 12 , 2)

f(x, y) = (y2 − x3)2

(λ, θ) = ( 5
12 , 1)
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Notation: ωκ = ωκ1

1 · · ·ωκd

d .

Asymptotic theory of Arnol’d, Guseı̆n-Zade and Varchenko (1974).

Theorem (AGV). Given κ, τ ∈ Zd
≥0,

Z(N) =

∫

Rd
≥0

e−Nωκ

ωτdω ≈ CN−λ(logN)θ−1

where C is a constant,

λ = min
i

τi + 1

κi
,

θ = number of times minimum is attained.

Proof idea : Zeta functions ζ(z) and state density functions v(t).

ζ(z) =

∫

Ω
|f(ω)|−zϕ(ω)dω, v(t) =

d

dt

∫

|f(ω)|<t
ϕ(ω)dω.
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To resolve a singularity is to find a change of variables so that
after the transformation, the singularities are “nice” intersections.

A famous deep result of Hironaka (1964) says that every variety has
a resolution of singularities (also known as a desingularization).
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Let Ω ⊂ Rd and f : Ω → R real analytic function.

• We say ρ : U → Ω desingularizes f if

1. U is a d-dimensional real analytic manifold covered
by coordinate patches U1, . . . , Us (≃ subsets of Rd).

2. ρ is a proper real analytic map that is an isomorphism
onto the subset {ω ∈ Ω : f(ω) 6= 0}.

3. For each restriction ρ : Ui → Ω,

f ◦ ρ(µ) = a(µ)µκ, det ∂ρ(µ) = b(µ)µτ

where a(µ) and b(µ) are nonzero on Ui.

• The preimage {µ : f ◦ ρ(µ) = 0} of the variety
{ω : f(ω) = 0} has simple normal crossings .
This preimage is also called the transform .
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• We know how to find RLCTs of monomial functions (AGV, 1985).
∫

Ω
e−Na(µ)µκ

b(µ)µτdµ ≈ CN−λ(logN)θ−1

where λ = mini
τi+1
κi

, θ = |{i : τi+1
κi

= λ}|.
• To compute the RLCT of any function f(ω):

1. Find minimum f∗ of f over Ω.
2. Find a desingularization ρ for f − f∗.
3. Use AGV Theorem to find (λi, θi) on each patch Ui.
4. λ = min{λi}, θ = max{θi : λi = λ}.

• The difficult part is finding a desingularization,
e.g (Bravo·Encinas·Villamayor, 2005).



Higher Order Asymptotics

Integral Asymptotics

• Coin Toss

• Laplace

• RLCT

• Geometry

• Monomials

• Desingularizations

• Algorithm

• Higher Order

Singular Learning

RLCTs

Computations

If we are able to desingularize f(x, y) = −1
2 log(1− x2y2),

the higher order asymptotics of Z(N) can also be derived.

√

π

8
N− 1

2 logN −
√

π

8

(

1

log 2
− 2 log 2− γ

)

N− 1

2

−1

4
N−1 logN +

1

4

(

1

log 2
+ 1− γ

)

N−1

−
√
2π

128
N− 3

2 logN +

√
2π

128

(

1

log 2
− 2 log 2− 10

3
− γ

)

N− 3

2

− 1

24
N−2 + · · ·

Euler-Mascheroni
constant

γ = lim
n→∞

(

n
∑

k=1

1

k
− log n

)

≈ 0.5772156649.
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Many models used in machine learning are singular
e.g. normal mixtures, neural networks, hidden markov models,
but their asymptotic behavior is poorly understood.

In 1998, Sumio Watanabe discovered how to solve this problem
using Hironaka’s theorem on the resolution of singularities.
Algebraic geometry is essential in the analysis of singular models.
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X random variable with state space Rk

∆ space of probability distributions on Rk

M ⊂ ∆ statistical model X1, . . . , XN sample of X
Ω parameter space q ∈ M true distribution of X
p(x|ω) distribution at ω ∈ Ω
ϕ(ω)dω prior distribution on Ω

Log likelihood ratio KN (ω) =
1

N

N
∑

i=1

log
q(Xi)

p(Xi|ω)

Kullback-Leibler function K(ω) =

∫

Rk

q(x) log
q(x)

p(x|ω)dx

Likelihood integral ZN =

∫

Ω

N
∏

i=1

p(Xi|ω)ϕ(ω)dω
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Define empirical entropy SN = − 1
N

∑N
i=1 log q(Xi).

Then, we can rewrite the likelihood integral as

ZN = e−NSN

∫

Ω
e−NKN (ω)ϕ(ω)dω.

Convergence of stochastic complexity (Watanabe)

The stochastic complexity has the asymptotic expansion

− logZN = NSN + λq logN − (θq − 1) log logN + FR
N

where FR
N converges in law to a random variable. Moreover,

λq, θq are asymptotic coefficients of the deterministic integral

Z(N) =

∫

Ω
e−NK(ω)ϕ(ω)dω ≈ CN−λq(logN)θq−1.

Think of this as generalized BIC for singular models.
λq, θq learning coefficient (and its order ) of the model M at q.
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Define log likelihood ratio. Note that its expectation is K(ω).

KN (ω) =
1

N

∑N
i=1 log

q(Xi)

p(Xi|ω)
.

Standard Form of Log Likelihood Ratio (Watanabe)

Suppose ρ : M → Ω desingularizes K(ω). Then,

KN ◦ ρ(µ) = µ2κ − 1√
N

µκξN (µ)

where ξN (µ) converges in law to a Gaussian process on M .

Think of this as generalized CLT for singular models.
Classical central limit theorem (CLT):

sample mean =
1

N

∑N
i=1Xi = µ+

1√
N

σξN

where ξN converges in law to standard normal distribution.
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How do we desingularize K(ω) =
∫

X q(x) log q(x)
p(x|ω)dx?

• Algorithms (e.g. Bravo-Encinas-Villamayor) intractable
• Many models parametrized by polynomials. Exploit this?

Regularly parametrized functions

• A function f : Ω → R is regularly parametrized if it factors

Ω
u−→ U

g−→ R

where U ⊂ Rk nbhd of origin, u is polynomial, g has unique
minimum g(0) = 0 at the origin and det ∂2g(0) 6= 0.

• For such functions, define fiber ideal

I = 〈u1(ω), . . . , uk(ω)〉 ⊂ R[ω1, . . . , ωd].

The variety V(I) is the fiber f−1(0).

Equivalence (Watanabe) RLCT of f = RLCT of u21 + · · ·+ u2k.
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f : Ω
u−→ U

g−→ R

• Laplace Approximation . When f is the sum-of-squares

f = ω2
1 + . . .+ ω2

d,

we let g be f and u be the identity map. The fiber ideal is

I = 〈ω1, . . . , ωd〉.

• Coin Toss Integral . In one of our earlier examples

f = −1

2
log(1− x2y2),

let u(x, y) = xy, g(u) = −1
2 log(1− u2). The fiber ideal is

I = 〈xy〉.
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• Discrete Models . Given true distribution p̂ ∈ M and state
probabilities p(i|ω), the Kullback-Leibler distance K(ω) factors

K : Ω
p−→ ∆k−1

g−→ R

where

g(p) =

k
∑

i=1

p̂(i) log
p̂(i)

p(i)

and det ∂2g is nonzero at p̂. The fiber ideal is

Ip̂ = 〈p(1|ω)− p̂(1), . . . , p(k|ω)− p̂(k)〉.

• Gaussian models . Given true distribution N (µ̂, Σ̂) and model
distributions N (µ(ω),Σ(ω)), the Kullback-Leibler function
K(ω) is also regularly parametrized. The fiber ideal is

Iµ̂,Σ̂ = 〈µi(ω)− µ̂i,Σij(ω)− Σ̂ij〉ij
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Ideal 〈y − x2, z − x3〉
set of polynomials generated
by y − x2 and z − x3 via
addition and polynomial-scaling

Variety V(y − x2, z − x3)
set of points where polynomials
in the ideal evaluate to zero

In linear algebra, we solve linear equations by
computing a row echelon form using Gaussian elimination.
In algebraic geometry, we solve polynomial equations by
computing a Gröbner basis using Buchberger’s algorithm.

Textbook : “Ideals, Varieties, and Algorithms,” Cox-Little-O’Shea.
Software : Macaulay2, Singular, Maple, etc.



Real Log Canonical Thresholds of Ideals

Integral Asymptotics

Singular Learning

RLCTs

• Ideals·Varieties

• RLCTs of Ideals

• Discrete·Gaussian

• Geometry

• Distance·Multiplicity

• Upper Bounds

• Integral Asymptotics

Computations

Given ideal I = 〈f1(ω), . . . , fk(ω)〉 ⊂ R[ω1, . . . , ωd],
polynomial ϕ(ω), semialgebraic Ω ⊂ Rd.

The real log canonical threshold (λ, θ) of I at x ∈ Ω satisfies
∫

Ωx

e−N(f2

1
+···+f2

k
) ϕ(ω)dω ≈ CN−λ/2(logN)θ−1

for suff small nbhd Ωx of x in Ω. Denote (λ, θ) = RLCTΩx(I;ϕ).

Properties

• Definition is independent of choice of generators f1, . . . , fk.
• λ positive rational number, θ positive integer .
• Depends on structure of boundary ∂Ω if x ∈ ∂Ω.
• Order the (λ, θ) by the value of Nλ(logN)−θ for large N .
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• Discrete models with state probabilities p(i|ω).
Fiber ideal at a true distribution p̂

Ip̂ = 〈p(i|ω)− p̂(i)〉i

• Gaussian models with mean µ(ω) and covariance Σ(ω).
Fiber ideal at a true distribution N (µ̂, Σ̂)

Iµ̂,Σ̂ = 〈µi(ω)− µ̂i,Σij(ω)− Σ̂ij〉ij

Learning coefficients and RLCTs of fiber ideals (L.)

If the true distribution q is in the model,
then the learning coefficient (λq, θq) is given by

(2λq, θq) = min
x∈V(Iq)

RLCTΩx(Iq;ϕ)

where Iq is the fiber ideal at q and V(Iq) ⊂ Ω is the fiber over q.
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e.g. Let I = 〈x4, x2y, xy3, y4〉 and τ = (1, 1).

Newton polyhedron τ -distance

The τ -distance is lτ = 8/5 and the multiplicity is θτ = 1.
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e.g. Let I = 〈x4, x2y, xy3, y4〉 and τ = (2, 1).

Newton polyhedron τ -distance

The τ -distance is lτ = 1 and the multiplicity is θτ = 2.
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Given an ideal I ⊂ R[ω1, . . . , ωd],

1. Plot α ∈ Rd for each monomial ωα appearing in some f ∈ I .
2. Take the convex hull P(I) of all plotted points.

This convex hull P(I) is the Newton polyhedron of I .

Given a vector τ ∈ Zd
≥0, define

1. τ -distance lτ = min{t : tτ ∈ P(I)}.
2. multiplicity θτ = codim of face of P(I) at this intersection.

Upper bound and equality for RLCT (L.)

If lτ is the τ -distance of P(I) and θτ is its multiplicity, then

RLCTΩx(I;ω
τ−1) ≤ (1/lτ , θτ ).

Equality occurs when I is a monomial ideal.
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Bayesian Information Criterion (BIC)
When the model is regular, the fiber ideal is I = 〈ω1, . . . , ωd〉.
Using Newton polyhedra, RLCT(I) = (d, 1) (exercise).
By Watanabe’s theorem, the likelihood integral Zn is asymptotically

− logZN ≈ NSN +
d

2
logN.

Coin Toss Integral

Z(N) =

∫

[0,1]2
(1− x2y2)N/2 dxdy.

Earlier, we saw that the fiber ideal for this integral is I = 〈xy〉.
Using Newton polyhedra, RLCT(I) = (1, 2) (exercise).
Therefore, for some C > 0, the integral Z(N) is asymptotically

Z(N) ≈ CN−1/2 logN
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Naı̈ve Bayes network with 2 ternary variables, 2 hidden states.
Model parametrized in ω = (t, a1, a2, . . . , d3) by

p =

(

ta1b1 + (1 − t)c1d1 ta1b2 + (1 − t)c1d2 ta1b3 + (1 − t)c1d3

ta2b1 + (1 − t)c2d1 ta2b2 + (1 − t)c2d2 ta2b3 + (1 − t)c2d3

ta3b1 + (1 − t)c3d1 ta3b2 + (1 − t)c3d2 ta3b3 + (1 − t)c3d3

)

.

Assume true distribution p̂ij =
1
9 for all i, j.

Compute RLCT of fiber ideal

I = 〈p11(ω)− p̂, . . . , p33(ω)− p̂〉
at the point ŵ = (12 ,

1
3 ,

1
3 , . . . ,

1
3) ∈ V(I).

Computations using our library asymptotics.m2 show that

RLCTω̂(I; 1) = (6, 2).

All other learning coefficients can be computed in this fashion.

2

3 3
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Macaulay2, version 1.4

with packages: ConwayPolynomials, Elimination,

IntegralClosure, LLLBases,

PrimaryDecomposition, ReesAlgebra,

TangentCone

i1 : load "asymptotics.m2";

i2 : R = QQ[t,a1,a2,b1,b2,c1,c2,d1,d2];

i3 : A = matrix {{a1,a2,1-a1-a2}};

i4 : B = matrix {{b1,b2,1-b1-b2}};

i5 : C = matrix {{c1,c2,1-c1-c2}};

i6 : D = matrix {{d1,d2,1-d1-d2}};

i7 : P = t*(transpose A)*B + (1-t)*(transpose C)*D;

3 3

o7 : Matrix R <--- R
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Maps for shifting the origin to ω̂ and evaluating a polynomial at ω̂.

i8 : shift = map(R,R,{t+1/2,a1+1/3,a2+1/3,b1+1/3,b2+1/3,

c1+1/3,c2+1/3,d1+1/3,d2+1/3});

i9 : eval = map(R,R,{1/2,1/3,1/3,1/3,1/3,

1/3,1/3,1/3,1/3});

The true distribution.

i10 : eval P

o10 = {-1} | 1/9 1/9 1/9 |

{-1} | 1/9 1/9 1/9 |

{-1} | 1/9 1/9 1/9 |

The fiber ideal.

i11 : I = ideal (shift P - eval P);

o11 : Ideal of R



Gröbner Basis

Integral Asymptotics

Singular Learning

RLCTs

Computations

• Schizo Patients

• Model Definition

• Fiber Ideal
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Gröbner basis of the fiber ideal.

i12 : I = ideal gens gb I

o12 = ideal (a2*d2, a1*d2, b2*d1 - b1*d2, a2*d1, a1*d1,

b2*c2, b1*c2, b2*c1, b1*c1, a2*c1 - a1*c2,

2t*b2 - 2t*d2 + b2 + d2, 2t*b1 - 2t*d1 + b1 + d1,

2t*a2 - 2t*c2 + a2 + c2, 2t*a1 - 2t*c1 + a1 + c1,

2t*c2*d2 - c2*d2, 2t*c1*d2 - c1*d2,

2t*c2*d1 - c2*d1, 2t*c1*d1 - c1*d1)

Preliminary upper bound of the RLCT.

i13 : RLCT(I,1)

[RLCT] Warning: Output RLCT is an upper bound.

o13 = (8, 1)

To compute the RLCT, we transform I into a monomial ideal.
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Gröbner basis of the fiber ideal.

i12 : I = ideal gens gb I

o12 = ideal (a2*d2, a1*d2, b2*d1 - b1*d2, a2*d1, a1*d1,

b2*c2, b1*c2, b2*c1, b1*c1, a2*c1 - a1*c2,

2t*b2 - 2t*d2 + b2 + d2, 2t*b1 - 2t*d1 + b1 + d1,

2t*a2 - 2t*c2 + a2 + c2, 2t*a1 - 2t*c1 + a1 + c1,

2t*c2*d2 - c2*d2, 2t*c1*d2 - c1*d2,

2t*c2*d1 - c2*d1, 2t*c1*d1 - c1*d1)

The red generator prevents I from being a monomial ideal.
Replace it with new indeterminate β2 via the change of variable

b2 =
β2 − (1− 2t)d2

1 + 2t
which is a real-analytic isomorphism near the origin.

We can also accomplish this by introducing a new polynomial
−β2 + 2tb2 − 2td2 + b2 + d2 to the ideal and eliminating b2.
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Perform similar transformations to a1, a2, b1, b2.

i14 : R1 = QQ[t,a1,a2,b1,b2,c1,c2,d1,d2,bb1,bb2,cc1,cc2];

i15 : liftR1 = map(R1,R,{t,a1,a2,b1,b2,c1,c2,d1,d2});

i16 : I1 = (liftR1 I) + ideal(

-bb2 + 2*t*b2 - 2*t*d2 + b2 + d2,

-bb1 + 2*t*b1 - 2*t*d1 + b1 + d1,

-cc2 + 2*t*a2 - 2*t*c2 + a2 + c2,

-cc1 + 2*t*a1 - 2*t*c1 + a1 + c1);

i17 : I1 = eliminate({c1,c2,b1,b2},I1)

o17 = ideal (cc2, cc1, bb2, bb1,

a2*d2, a1*d2, a2*d1, a1*d1)

Finally, we have a monomial ideal so we can compute its RLCT.

i18 : RLCT(I1,1)

o18 = (6, 2)
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This analysis can be automated somewhat using the following
algorithms from asymptotics.m2.

i21 : I1 = simplifyRegularParameters I

o21 = ideal (a1, a2, b1, b2,

2t*c2*d2 - c2*d2, 2t*c1*d2 - c1*d2,

2t*c2*d1 - c2*d1, 2t*c1*d1 - c1*d1)

i22 : removeUnitComponents I1

o22 = ideal (b2, b1, a2, a1, c2*d2, c1*d2, c2*d1, c1*d1)

For more information about this Macaulay2 library:

http://math.berkeley.edu/~shaowei/rlct.html

http://math.berkeley.edu/~shaowei/rlct.html
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“Algebraic Methods for Evaluating Integrals in Bayesian Statistics”

http://math.berkeley.edu/~shaowei/swthesis.pdf

(PhD dissertation, May 2011)

http://math.berkeley.edu/~shaowei/swthesis.pdf
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The integral Z(N) with f(x, y) = −1
2 log(1− x2y2) comes from

the coin toss model parametrized by

p1(ω, t) =
1

2
t+ (1− t)ω

p2(ω, t) =
1

2
t+ (1− t)(1− ω)

where the Kullback-Leibler function at the distribution (q1, q2)

K(ω, t) = q1 log
q1

p1(ω, t)
+ q2 log

q2
p2(ω, t)

.

The function f(x, y) comes from K(x, y) at q1 = q2 = 1/2
and substituting ω = (1 + x)/2, t = 1− y.
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Let [ωα]f denote coefficient of monomial ωα in polynomial f .

Given γ ⊂ Rd and poly f , define face poly fγ =
∑

α∈γ([ω
α]f)ωα.

Given γ ⊂ Rd and ideal I , define face ideal Iγ = 〈fγ : f ∈ I〉.
We say I is sos-nondegenerate if for all compact faces γ ⊂ P(I),
the real variety V(Iγ) does not intersect the torus (R∗)d.

Remark sos = sum-of-squares. Saia has similar notion of
nondegeneracy for ideals of complex formal power series.

Proposition (L.) If I = 〈f1, . . . , fr〉 and γ is a compact face
of the Newton polyhedron P(I), then Iγ = 〈f1γ , . . . , frγ〉.
Proposition (L.) RLCT(I;ωτ−1) = (1/lτ , θτ ) if I is sos-ndg.

Proposition (Zwiernik) Monomial ideals are sos-ndg.
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Let F be a smooth polyhedral fan supported on the orthant Rd
≥0.

[smooth: each cone is generated by a subset of some basis of Zd]

Recall that we can associate to F , a toric variety P(F) covered by
open affines Uσ ≃ Rd, one for each maximal cone σ of F .

We also have a blowup map ρF : P(F) → Rd described by
monomial maps ρF ,σ : Uσ → Rd, µ 7→ µν , on the open affines.
[The columns of the matrix ν are minimal generators of the
maximal cone σ, and (µν)i = µνi where νi is the ith row of ν.]

Proposition (L.) :
Given a fiber ideal I , let F be a smooth refinement of the normal
fan of the Newton polyhedron P(I). If I is sos-nondegenerate, then
the toric blowup ρF : P(F) → Rd desingularizes f .
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Given a regularly parametrized function f = g ◦ u : Ω → R,
we want to exploit the polynomiality in u in desingularizing f .
Let I = 〈u1, . . . , uk〉 be the polynomial fiber ideal.
Given ρ : M → Ω, define pullback ρ∗I = 〈u1 ◦ ρ, . . . , uk ◦ ρ〉.

1. Monomialization (polynomial):
Find a map ρ : M → Ω which monomializes I ,
i.e. ρ∗I is a monomial ideal in each patch of M.
Use algorithm of Bravo-Encinas-Villamayor.

2. Principalization (combinatorial):
Find a map η : M → M which principalizes J = ρ∗I ,
i.e. η∗J is generated by one monomial in each patch of M .
Use toric blowups or Goward’s principalization map.

Theorem (L.) The composition ρ ◦ η desingularizes f .
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Evans-Gilula-Guttman(1989) studied schizophrenic patients for
connections between recovery time (in years Y ) and frequency
of visits by relatives.

2≤Y <10 10≤Y <20 20≤Y Totals

Regularly 43 16 3 62

Rarely 6 11 10 27

Never 9 18 16 43

Totals 58 45 29 132

They wanted to find out if the data can be explained by a naı̈ve
Bayesian network with two hidden states (e.g. male and female).
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Model parametrized by (t, a, b, c, d) ∈ ∆1×∆2×∆2×∆2×∆2.

2≤Y <10 10≤Y <20 20≤Y

Regularly ta1b1 + (1 − t)c1d1 ta1b2 + (1 − t)c1d2 ta1b3 + (1 − t)c1d3

Rarely ta2b1 + (1 − t)c2d1 ta2b2 + (1 − t)c2d2 ta2b3 + (1 − t)c2d3

Never ta3b1 + (1 − t)c3d1 ta3b2 + (1 − t)c3d2 ta3b3 + (1 − t)c3d3

We compute the marginal likelihood of this model, given the
above data and a uniform prior on the parameter space.

Lin-Sturmfels-Xu(2009) computed this integral exactly .
It is the rational number with numerator

278019488531063389120643600324989329103876140805
285242839582092569357265886675322845874097528033
99493069713103633199906939405711180837568853737

and denominator

12288402873591935400678094796599848745442833177572204
50448819979286456995185542195946815073112429169997801
33503900169921912167352239204153786645029153951176422
43298328046163472261962028461650432024356339706541132
34375318471880274818667657423749120000000000000000.
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We want to approximate the integral using asymptotic methods.
The EM algorithm gives us the maximum likelihood distribution

q =
1

132





43.002 15.998 3.000
5.980 11.123 9.897
9.019 17.879 16.102



 .

Compare this distribution with the data




43 16 3
6 11 10
9 18 16



 .

Use ML distribution as true distribution for our approximations.
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Recall that stochastic complexity = − log (marginal likelihood).

• The BIC approximates the stochastic complexity as

NSN +
9

2
logN.

• By computing the RLCT of the fiber ideal, our approximation is

NSN +
7

2
logN.

• Summary:

Stochastic Complexity

Exact 273.1911759
BIC 278.3558034

RLCT 275.9144024
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ZN =

∫

Ω

∏

i,j

pij(ω)
Uij ϕ(ω)dω

Using Watanabe’s Singular Learning Theory ,

− logZN ≈ −
∑

i,j

Uij log qij + λq logN − (θq − 1) log logN

where the learning coefficient (λq, θq) is given by

(λq, θq) =















(5/2, 1) if rank q = 1,
(7/2, 1) if rank q = 2, q /∈ [ 0

×
×
× ] ∪ [ 0

×
×
0 ],

(4, 1) if rank q = 2, q ∈ [ 0

×
×
× ] \ [ 0

×
×
0 ],

(9/2, 1) if rank q = 2, q ∈ [ 0

×
×
0 ].

Here, q ∈ [ 0

×
×
× ] if for some i, j, qii = 0 and qij qji qjj 6= 0,

q ∈ [ 0

×
×
0 ] if for some i, j, qii = qjj = 0 and qij qji 6= 0.
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