Singular Learning Theory: A view from Algebraic Geometry

Shaowei Lin (UC Berkeley)

12 Dec 2011
American Institute of Mathematics

Integral Asymptotics Appetizer Laplace Geometry Monomials Desingularization Algorithm Singular Learning Algebraic Geometry **Integral Asymptotics RLCTs** Applications Desingularization

An Appetizer

Integral Asymptotics

- Appetizer
- Laplace
- Geometry
- Monomials
- Desingularization
- Algorithm

Singular Learning

Algebraic Geometry

RLCTs

Applications

Desingularization

For large N, approximate

$$Z(N) = \int_{[0,1]^2} (1 - x^2 y^2)^{N/2} dx dy.$$

• Write Z(N) as $\int e^{-Nf(x,y)} dx dy$ where

$$f(x,y) = -\frac{1}{2}\log(1 - x^2y^2).$$

Can we use the Gaussian integral

$$\int_{\mathbb{R}^d} e^{-\frac{N}{2}(\omega_1^2 + \dots + \omega_d^2)} d\omega = \left(\frac{2\pi}{N}\right)^{d/2}$$

by finding a suitable change of coordinates for x, y?

Laplace Approximation

Integral Asymptotics

- Appetizer
- Laplace
- Geometry
- Monomials
- Desingularization
- Algorithm

Singular Learning

Algebraic Geometry

RLCTs

Applications

Desingularization

 Ω small nbhd of origin, $f:\Omega\to\mathbb{R}$ analytic function with unique minimum f(0) at origin, $\partial^2 f$ Hessian of f. If $\det\partial^2 f(0)\neq 0$,

$$Z(N) = \int_{\Omega} e^{-Nf(\omega)} d\omega \approx e^{-Nf(0)} \cdot \sqrt{\frac{(2\pi)^d}{\det \partial^2 f(0)}} \cdot N^{-d/2}.$$

e.g. Bayesian Information Criterion (BIC)

$$-\log Z(N) \approx \left(-\sum_{i=1}^{N} \log q^*(X_i)\right) + \frac{d}{2} \log N$$

e.g. Stirling's approximation

$$N! = N^{N+1} \int_0^\infty e^{-N(x-\log x)} dx \approx N^{N+1} e^{-N} \sqrt{\frac{2\pi}{N}}$$

Geometry of the Integral

Integral Asymptotics

- Appetizer
- Laplace
- Geometry
- Monomials
- Desingularization
- Algorithm

Singular Learning

Algebraic Geometry

RLCTs

Applications

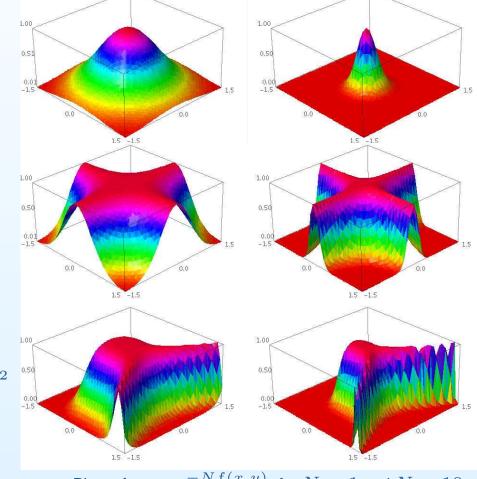
Desingularization

Because $\det \partial^2 f(0) = 0$ in our example, we cannot apply Laplace approximation. More important to study *minimas* of f.

$$f(x,y) = x^2 + y^2$$

$$f(x,y) = (xy)^2$$

$$f(x,y) = (y^2 - x^3)^2$$



Plots of
$$\,z=e^{-Nf(x,y)}\,$$
 for $N=1$ and $N=10$

Monomial Functions

Integral Asymptotics

- Appetizer
- Laplace
- Geometry
- Monomials
- Desingularization
- Algorithm

Singular Learning

Algebraic Geometry

RLCTs

Applications

Desingularization

Notation: $\omega^{\kappa} = \omega_1^{\kappa_1} \cdots \omega_d^{\kappa_d}$.

Asymptotic theory of Arnol'd, Guseĭn-Zade and Varchenko (1974).

Theorem (AGV). Given $\kappa, au \in \mathbb{Z}^d_{\geq 0}$,

$$Z(N) = \int_{\mathbb{R}^d_{>0}} e^{-N\omega^{\kappa}} \omega^{\tau} d\omega \approx CN^{-\lambda} (\log N)^{\theta-1}$$

where C is a constant,

$$\lambda = \min_{i} \frac{\tau_i + 1}{\kappa_i},$$

 $\theta =$ number of times minimum is attained.

Resolution of Singularities

Integral Asymptotics

- Appetizer
- Laplace
- Geometry
- Monomials
- Desingularization
- Algorithm

Singular Learning

Algebraic Geometry

RLCTs

Applications

Desingularization

Let $\Omega \subset \mathbb{R}^d$ and $f:\Omega \to \mathbb{R}$ analytic function.

- We say $\rho: \mathscr{M} \to \Omega$ desingularizes f if
 - 1. \mathcal{M} is a d-dimensional real analytic manifold covered by patches U_1, \ldots, U_s (\simeq subsets of \mathbb{R}^d).
 - 2. For each restriction $\rho: U_i \to \Omega, \mu \mapsto \omega$,

$$f \circ \rho(\mu) = a(\mu)\mu^{\kappa}, \quad \det \rho'(\mu) = b(\mu)\mu^{\tau}$$

where $a(\mu)$ and $b(\mu)$ are nonzero on U_i .

- Deep result in algebraic geometry (Hironaka's Theorem, 1964)
 that desingularizations always exist.
- The preimage of the *variety* $\{\omega: f(\omega) = 0\}$ is a *transform* $\{\mu: f \circ \rho(\mu) = 0\}$ that has *simple normal crossings*.

Algorithm for Computing Integral Asymptotics

Integral Asymptotics

- Appetizer
- Laplace
- Geometry
- Monomials
- Desingularization
- Algorithm

Singular Learning

Algebraic Geometry

RLCTs

Applications

Desingularization

$$Z(N) = \int_{\Omega} e^{-Nf(\omega)} \varphi(\omega) d\omega \approx e^{-Nf^*} \cdot CN^{-\lambda} (\log N)^{\theta - 1}$$

Input:

Semialgebraic set $\Omega = \{\omega : g_1(\omega) \geq 0, \dots, g_l(\omega) \geq 0\} \subset \mathbb{R}^d$ Analytic functions $f, \varphi : \Omega \to \mathbb{R}$

Output:

Asymptotic coefficients f^*, λ, θ

- 1. Find minimum f^* of f over Ω .
- 2. Find a desingularization ρ for product $(f f^*)g_1 \cdots g_l \varphi$.
- 3. Use AGV Theorem to find coefficients λ_i , θ_i on each patch U_i .
- 4. $\lambda = \min\{\lambda_i\}, \ \theta = \max\{\theta_i : \lambda_i = \lambda\}.$

How do we desingularize $f(x,y) = -\frac{1}{2}\log(1-x^2y^2)$?

Integral Asymptotics Singular Learning Statistical Model Learning Coefficient Geometry Standard Form Questions Algebraic Geometry **RLCTs Singular Learning** Applications Desingularization

Statistical Model

Integral Asymptotics

Singular Learning

- Statistical Model
- Learning Coefficient
- Geometry
- Standard Form
- Questions

Algebraic Geometry

RLCTs

Applications

Desingularization

X random variable with state space \mathcal{X} (e.g. $\{1,2,\ldots,k\},\mathbb{R}^k$) space of probability distributions on \mathcal{X}

 $\mathcal{M} \subset \Delta_{\mathcal{X}}$ statistical model, image of $p:\Omega \to \Delta_{\mathcal{X}}$

 Ω parameter space

 $p(x|\omega)dx$ distribution at $\omega \in \Omega$

 $\varphi(\omega)d\omega$ prior distribution on Ω

Given samples X_1, \ldots, X_N of X, define *marginal likelihood*

$$Z_N = \int_{\Omega} \prod_{i=1}^N p(X_i|\omega) \, \varphi(\omega) d\omega.$$

Given $q \in \Delta_{\mathcal{X}}$, define *Kullback-Leibler function*

$$K(\omega) = \int_{\mathcal{X}} q(x) \log \frac{q(x)}{p(x|\omega)} dx.$$

Learning Coefficient

Integral Asymptotics

Singular Learning

- Statistical Model
- Learning Coefficient
- Geometry
- Standard Form
- Questions

Algebraic Geometry

RLCTs

Applications

Desingularization

Suppose samples X_1, \ldots, X_N are drawn from distribution $q \in \mathcal{M}$. Define *empirical entropy* $S_N = -\frac{1}{N} \sum_{i=1}^N \log q(X_i)$.

Convergence of stochastic complexity (Watanabe)

The stochastic complexity has the asymptotic expansion

$$-\log Z_N = NS_N + \lambda_q \log N - (\theta_q - 1) \log \log N + F_N^R$$

where F_N^R converges in law to a random variable. Moreover, λ_q, θ_q are asymptotic coefficients of the deterministic integral

$$Z(N) = \int_{\Omega} e^{-NK(\omega)} \varphi(\omega) d\omega \approx CN^{-\lambda_q} (\log N)^{\theta_q - 1}.$$

Think of this as generalized BIC for singular models.

 λ_q, θ_q learning coefficient of the model $\mathcal M$ at q, and its order. Loosely speaking, a model is regular if the Laplace approximation applies to Z(N). Otherwise, it is singular.

Geometry of Singular Models

Integral Asymptotics

Singular Learning

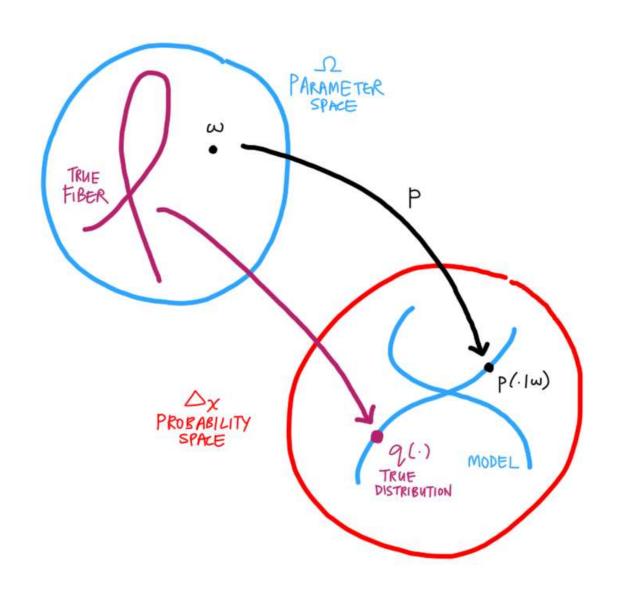
- Statistical Model
- Learning Coefficient
- Geometry
- Standard Form
- Questions

Algebraic Geometry

RLCTs

Applications

Desingularization



Standard Form of Log Likelihood Ratio

Integral Asymptotics

Singular Learning

- Statistical Model
- Learning Coefficient
- Geometry
- Standard Form
- Questions

Algebraic Geometry

RLCTs

Applications

Desingularization

Define *log likelihood ratio*. Note that its expectation is $K(\omega)$.

$$K_N(\omega) = \frac{1}{N} \sum_{i=1}^N \log \frac{q(X_i)}{p(X_i|\omega)}.$$

Standard Form of Log Likelihood Ratio (Watanabe)

Suppose $\rho: \mathcal{M} \to \Omega$ desingularizes $K(\omega)$. Then,

$$K_N \circ \rho(\mu) = \mu^{2\kappa} - \frac{1}{\sqrt{N}} \mu^{\kappa} \xi_N(\mu)$$

where $\xi_N(\mu)$ converges in law to a Gaussian process on ${\mathscr M}$.

Think of this as *generalized CLT* for singular models.

Classical central limit theorem (CLT):

sample mean
$$=\frac{1}{N}\sum_{i=1}^{N}X_{i}=\mu+\frac{1}{\sqrt{N}}\sigma\xi_{N}$$

where ξ_N converges in law to standard normal distribution.

Mathematical Questions in Singular Learning

Integral Asymptotics

Singular Learning

- Statistical Model
- Learning Coefficient
- Geometry
- Standard Form
- Questions

Algebraic Geometry

RLCTs

Applications

Desingularization

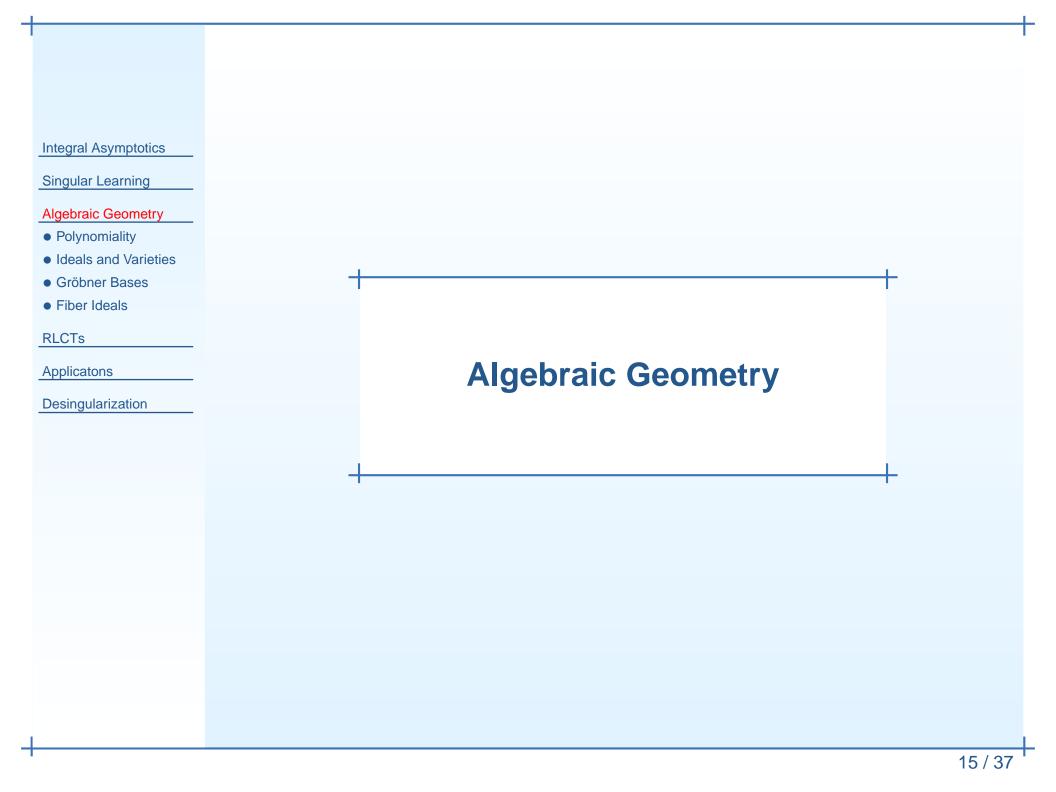
For each distribution q in the model \mathcal{M} ,

- 1. Study the geometrical structure of the fiber $p^{-1}(q)$.
- 2. Study the asymptotics of the integral

$$Z(N) = \int_{\Omega} e^{-NK(\omega)} \varphi(\omega) d\omega$$

and compute the learning coefficient λ_q and its order θ_q .

3. Desingularize the Kullback-Leibler function $K(\omega)$.



Exploiting Polynomiality

Integral Asymptotics

Singular Learning

Algebraic Geometry

- Polynomiality
- Ideals and Varieties
- Gröbner Bases
- Fiber Ideals

RLCTs

Applications

Desingularization

How do we desingularize $f(x,y) = -\frac{1}{2}\log(1-x^2y^2)$?

- Algorithms for desingularization (e.g. Bravo-Encinas-Villamayor) intractable when applied to nonpolynomial functions like $K(\omega)$.
- Many singular models parametrized by polynomials. Exploit this?

Regularly parametrized models

• A model is *regularly parametrized* if its map $p:\Omega \to \Delta_{\mathcal{X}}$ factors

$$\Omega \xrightarrow{u} U \xrightarrow{f} \Delta_{\mathcal{X}}$$

where $f:U\to\Delta_{\mathcal{X}}$ defines a regular model and $u:\Omega\to U\subset\mathbb{R}^k$ is a polynomial map.

- e.g. Gaussian/discrete models parametrized by polynomials.
- Kullback-Leibler function $K(\omega)$ also factors

$$\Omega \xrightarrow{u} U \xrightarrow{f} \Delta_{\mathcal{X}} \xrightarrow{g} \mathbb{R}$$

where Hessian of $g \circ f$ has nonzero determinant at q.

Ideals and Varieties

Integral Asymptotics

Singular Learning

Algebraic Geometry

- Polynomiality
- Ideals and Varieties
- Gröbner Bases
- Fiber Ideals

RLCTs

Applications

Desingularization

Polynomial system $\{y-x^2,y\}\subset\mathbb{R}[x,y]$ Solution set (*variety*) $V=\{(0,0)\}\subset\mathbb{R}^2$

• If $y-x^2$ and y vanish on V, so do all polynomials of the form

$$p(x,y) = (y - x^2) p_1(x,y) + (y) p_2(x,y).$$

This infinite set of polynomials is the *ideal* $I = \langle y - x^2, y \rangle$.

- Vector spaces: generated by addition, scalar multiplication.
 Ideals: generated by addition, polynomial multiplication.
- Ideal membership. Is $x^2 \in I$? Is $x \in I$?
- Given subset $I \subset \mathcal{R} := \mathbb{R}[x_1, \dots, x_d]$, define the *variety* $\mathcal{V}(I) = \{x \in \mathbb{R}^d : f(x) = 0 \text{ for all } f \in I\}.$

Given subset $V \subset \mathbb{R}^d$, define the *ideal*

$$\mathcal{I}(V) = \{ f \in \mathcal{R} : f(x) = 0 \text{ for all } x \in V \}.$$

Gröbner Bases

Integral Asymptotics

Singular Learning

Algebraic Geometry

- Polynomiality
- Ideals and Varieties
- Gröbner Bases
- Fiber Ideals

RLCTs

Applications

Desingularization

- Every system of linear equations has a row echelon form, which depends on the ordering of the coordinates and is computed using Gaussian elimination.
- Every system of polynomial equations has a *Gröbner basis*, which depends on the ordering of the monomials and is computed using *Buchberger's algorithm*.
- Determine ideal membership, dimension, degree, number of solutions, irreducible components, elimination of variables, etc.
 Also essential in resolution of singularities.

Textbook:

"Ideals, Varieties, and Algorithms," Cox-Little-O'Shea (1997)

Software:

Macaulay2, Singular, Maple, etc.

Fiber Ideals

Integral Asymptotics

Singular Learning

Algebraic Geometry

- Polynomiality
- Ideals and Varieties
- Gröbner Bases
- Fiber Ideals

RLCTs

Applications

Desingularization

Regularly Parametrized Functions

ullet A function $f:\Omega o\mathbb{R}$ is *regularly parametrized* if it factors

$$\Omega \xrightarrow{u} U \xrightarrow{g} \mathbb{R}$$

where $U \subset \mathbb{R}^k$ nbhd of origin, u is polynomial, g has unique minimum g(0) = 0 at the origin and $\det \partial^2 g(0) \neq 0$.

For such functions, define fiber ideal

$$I = \langle u_1(\omega), \dots, u_k(\omega) \rangle \subset \mathbb{R}[\omega_1, \dots, \omega_d].$$

It is the ideal of the fiber $f^{-1}(0)$.

• e.g. $f(x,y) = -\frac{1}{2}\log(1-x^2y^2)$

$$u(x,y) = xy, \ g(u) = -\frac{1}{2}\log(1-u^2)$$

fiber ideal $I = \langle xy \rangle$

Integral Asymptotics

Singular Learning

Algebraic Geometry

RLCTs

- Definition
- Learning Coefficients
- Newton Polyhedra
- Upper Bounds

Applications

Desingularization

Real Log Canonical Thresholds

Definition

Integral Asymptotics

Singular Learning

Algebraic Geometry

RLCTs

- Definition
- Learning Coefficients
- Newton Polyhedra
- Upper Bounds

Applications

Desingularization

Given ideal $I=\langle f_1(\omega),\ldots,f_k(\omega)\rangle\subset\mathbb{R}[\omega_1,\ldots,\omega_d],$ semialgebraic set $\Omega\subset\mathbb{R}^d,$ polynomial $\varphi(\omega)\in\mathbb{R}[\omega_1,\ldots,\omega_d],$

the *real log canonical threshold* of I is the pair (λ,θ) where λ is the smallest pole of the zeta function

$$\zeta(z) = \int_{\Omega} (f_1^2(\omega) + \dots + f_k^2(\omega))^{-z/2} \varphi(\omega) d\omega, \ z \in \mathbb{C}$$

and θ its order. We denote $(\lambda, \theta) = \mathrm{RLCT}_{\Omega}(I; \varphi)$.

- Definition is independent of choice of generators f_1, \ldots, f_k .
- The poles of the zeta function are positive rational numbers.
- Order the pairs (λ, θ) by the value of $\lambda \log N \theta \log \log N$ for sufficiently large N.

Learning Coefficients

Integral Asymptotics

Singular Learning

Algebraic Geometry

RLCTs

- Definition
- Learning Coefficients
- Newton Polyhedra
- Upper Bounds

Applications

Desingularization

Theorem (L.)

Let $f=g\circ u:\Omega\to\mathbb{R}$ be a regularly parametrized function. The asymptotic coefficient (λ,θ) of the integral

$$Z(N) = \int_{\Omega} e^{-Nf(\omega)} \varphi(\omega) d\omega \approx CN^{-\lambda} (\log N)^{\theta-1}$$

is given by

$$(2\lambda, \theta) = \text{RLCT}_{\Omega}(I; \varphi) = \min_{x \in \mathcal{V}(I)} \text{RLCT}_{\Omega_x}(I; \varphi)$$

where $I = \langle u_1, \dots, u_k \rangle$ is the fiber ideal of f, $\mathcal{V}(I) \subset \Omega$ is the fiber $f^{-1}(0)$, and each Ω_x is a sufficiently small nbhd of x in Ω .

Corollary (L.)

Given regularly parametrized model \mathcal{M} and $q \in \mathcal{M}$, the learning coefficient (λ_q, θ_q) is given by the above formula.

Newton Polyhedra

Integral Asymptotics

Singular Learning

Algebraic Geometry

RLCTs

- Definition
- Learning Coefficients
- Newton Polyhedra
- Upper Bounds

Applications

Desingularization

Given an ideal $I \subset \mathbb{R}[\omega_1,\ldots,\omega_d]$,

- 1. Plot $\alpha \in \mathbb{R}^d$ for each monomial ω^{α} appearing in some $f \in I$.
- 2. Take the convex hull $\mathcal{P}(I)$ of all plotted points.

This convex hull $\mathcal{P}(I)$ is the *Newton polyhedron* of I.

Given a vector $au \in \mathbb{Z}^d_{>0}$, define

- 1. τ -distance $l_{\tau} = \min\{t : t(\tau_1 + 1, \dots, \tau_d + 1) \in \mathcal{P}(I)\}.$
- 2. multiplicity $\theta_{\tau} = \text{codim of face of } \mathcal{P}(I)$ at this intersection.

Newton Polyhedra

Integral Asymptotics

Singular Learning

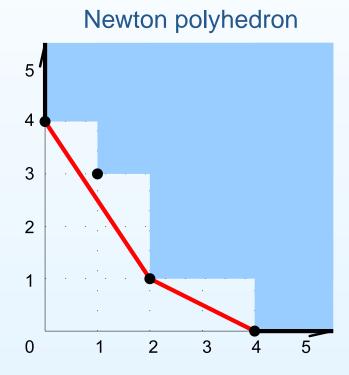
Algebraic Geometry

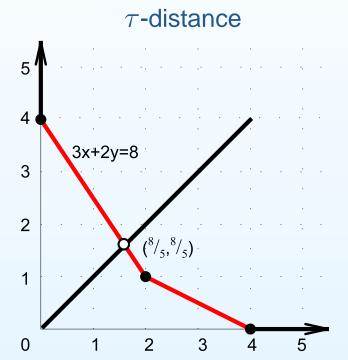
RLCTs

- Definition
- Learning Coefficients
- Newton Polyhedra
- Upper Bounds

Applications

Desingularization





The au-distance is $l_{ au}=8/5$ and the multiplicity is $heta_{ au}=1$.

Upper Bounds

Integral Asymptotics

Singular Learning

Algebraic Geometry

RLCTs

- Definition
- Learning Coefficients
- Newton Polyhedra
- Upper Bounds

Applications

Desingularization

Let $I \subset \mathbb{R}[\omega_1, \dots, \omega_d]$ be an ideal.

Proposition (Trivial) $RLCT_{\Omega}(I;\varphi) \leq d$

Theorem (Watanabe) RLCT $_{\Omega}(I;\varphi) \leq \operatorname{codim} \mathcal{V}(I)$

Theorem (L.)

For a sufficiently small nbhd $U \subset \mathbb{R}^d$ of the origin,

$$RLCT_U(I; \omega^{\tau}) \leq (1/l_{\tau}, \theta_{\tau})$$

where l_{τ} is the τ -distance of Newton polyhedron $\mathcal{P}(I)$ and θ_{τ} its multiplicity. Equality occurs when I is a monomial ideal.

e.g.
$$f(x,y) = -\frac{1}{2}\log(1-x^2y^2)$$
, $I = \langle xy \rangle$, $\tau = (0,0)$.

The au-distance $l_{ au}$ is 1, and its multiplicity $\theta_{ au}$ is 2. Therefore, $Z(N) \approx CN^{-1/2}(\log N)$.

Integral Asymptotics Singular Learning Algebraic Geometry **RLCTs Applications** • Example 1 • Example 2 Desingularization **Applications to Statistics**

Example 1: Bayesian Information Criterion

Integral Asymptotics

Singular Learning

Algebraic Geometry

RLCTs

Applications

- Example 1
- Example 2

Desingularization

When the model is regular, the fiber ideal is $I = \langle \omega_1, \dots, \omega_d \rangle$. Using Newton polyhedra, the RLCT of this ideal is (d, 1).

By our theorem, the learning coefficient is $(\lambda, \theta) = (d/2, 1)$. By Watanabe's theorem, the stochastic complexity is asymptotically

$$NS_N + \frac{d}{2}\log N.$$

This formula is the Bayesian Information Criterion (BIC).

Integral Asymptotics

Singular Learning

Algebraic Geometry

RLCTs

Applications

- Example 1
- Example 2

Desingularization

Evans-Gilula-Guttman(1989) studied schizophrenic patients for connections between recovery time (in years Y) and frequency of visits by relatives.

	$2 \le Y < 10$	$10 \le Y < 20$	$20 \leq Y$	Totals
Regularly	43	16	3	<i>62</i>
Rarely	6	11	10	27
Never	9	18	16	43
Totals	58	45	29	132

They wanted to find out if the data can be explained by a *naïve Bayesian network* with two hidden states (e.g. male and female).

Integral Asymptotics

Singular Learning

Algebraic Geometry

RLCTs

Applications

- Example 1
- Example 2

Desingularization

Model parametrized by $(t, a, b, c, d) \in \Delta_1 \times \Delta_2 \times \Delta_2 \times \Delta_2 \times \Delta_2$.

We compute the *marginal likelihood* of this model, given the above data and a uniform prior on the parameter space.

Lin-Sturmfels-Xu(2009) computed this integral *exactly*. It is the rational number with numerator

 $278019488531063389120643600324989329103876140805\\285242839582092569357265886675322845874097528033\\99493069713103633199906939405711180837568853737$

and denominator

 $12288402873591935400678094796599848745442833177572204\\50448819979286456995185542195946815073112429169997801\\33503900169921912167352239204153786645029153951176422\\43298328046163472261962028461650432024356339706541132\\34375318471880274818667657423749120000000000000000.$

Integral Asymptotics

Singular Learning

Algebraic Geometry

RLCTs

Applications

- Example 1
- Example 2

Desingularization

We want to approximate the integral using asymptotic methods.

The EM algorithm gives us the *maximum likelihood distribution*

$$q = \frac{1}{132} \begin{pmatrix} 43.002 & 15.998 & 3.000 \\ 5.980 & 11.123 & 9.897 \\ 9.019 & 17.879 & 16.102 \end{pmatrix}.$$

Compare this distribution with the data

$$\left(\begin{array}{cccc}
43 & 16 & 3 \\
6 & 11 & 10 \\
9 & 18 & 16
\end{array}\right).$$

Use ML distribution as true distribution for our approximations.

Integral Asymptotics

Singular Learning

Algebraic Geometry

RLCTs

Applications

- Example 1
- Example 2

Desingularization

Recall that stochastic complexity $= -\log$ (marginal likelihood).

The BIC approximates the stochastic complexity as

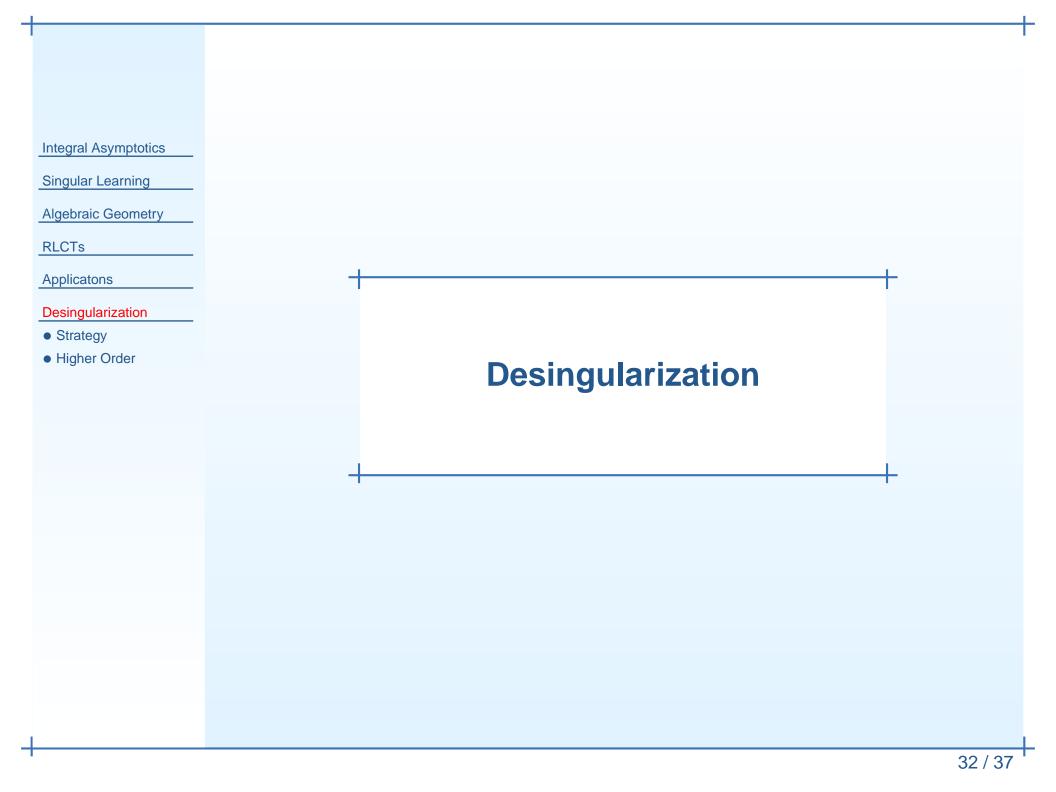
$$NS_N + \frac{9}{2}\log N.$$

By computing the RLCT of the fiber ideal, our approximation is

$$NS_N + \frac{7}{2}\log N.$$

• Summary:

	Stochastic Complexity
Exact	273.1911759
BIC	278.3558034
RLCT	275.9144024



Strategy for Regularly Parametrized Functions

Integral Asymptotics

Singular Learning

Algebraic Geometry

RLCTs

Applications

Desingularization

- Strategy
- Higher Order

Given a regularly parametrized function $f=g\circ u:\Omega\to\mathbb{R}$, we want to *exploit the polynomiality* in u in desingularizing f. Let $I=\langle u_1,\ldots,u_k\rangle$ be the polynomial fiber ideal. Given $\rho:M\to\Omega$, define *pullback* $\rho^*I=\langle u_1\circ\rho,\ldots,u_k\circ\rho\rangle$.

1. **Monomialization** (polynomial):

Find a map $\rho:M\to\Omega$ which *monomializes* I, i.e. ρ^*I is a monomial ideal in each patch of M. Use algorithm of Bravo-Encinas-Villamayor.

2. **Principalization** (combinatorial):

Find a map $\eta: \mathscr{M} \to M$ which *principalizes* $J = \rho^*I$, i.e. η^*J is generated by one monomial in each patch of \mathscr{M} . Use toric blowups or Goward's principalization map.

Theorem (L.) The composition $\rho \circ \eta$ desingularizes f.

Higher Order Asymptotics

Integral Asymptotics

Singular Learning

Algebraic Geometry

RLCTs

Applications

Desingularization

- Strategy
- Higher Order

Using this strategy to desingularize $f(x,y) = -\frac{1}{2}\log(1-x^2y^2)$, we were able to compute higher order asymptotics of Z(N).

$$\sqrt{\frac{\pi}{8}} N^{-\frac{1}{2}} \log N \qquad -\sqrt{\frac{\pi}{8}} \left(\frac{1}{\log 2} - 2\log 2 - \gamma\right) N^{-\frac{1}{2}} \\
-\frac{1}{4} N^{-1} \log N \qquad +\frac{1}{4} \left(\frac{1}{\log 2} + 1 - \gamma\right) N^{-1} \\
-\frac{\sqrt{2\pi}}{128} N^{-\frac{3}{2}} \log N \qquad +\frac{\sqrt{2\pi}}{128} \left(\frac{1}{\log 2} - 2\log 2 - \frac{10}{3} - \gamma\right) N^{-\frac{3}{2}} \\
-\frac{1}{24} N^{-2} \qquad + \cdots$$

Euler-Mascheroni constant

$$\gamma = \lim_{n \to \infty} \left(\sum_{k=1}^{n} \frac{1}{k} - \log n \right) \approx 0.5772156649.$$

Integral Asymptotics

Singular Learning

Algebraic Geometry

RLCTs

Applications

Desingularization

- Strategy
- Higher Order

"Algebraic Methods for Evaluating Integrals in Bayesian Statistics"

http://math.berkeley.edu/~shaowei/swthesis.pdf

(PhD dissertation, May 2011)

References

Integral Asymptotics

Singular Learning

Algebraic Geometry

RLCTs

Applications

Desingularization

- Strategy
- Higher Order

- 1. V. I. ARNOL'D, S. M. GUSEĬN-ZADE AND A. N. VARCHENKO: Singularities of Differentiable Maps, Vol. II, Birkhäuser, Boston, 1985.
- 2. A. Bravo, S. Encinas and O. Villamayor: A simplified proof of desingularisation and applications, *Rev. Math. Iberoamericana* **21** (2005) 349–458.
- 3. D. A. Cox, J. B. LITTLE, AND D. O'SHEA: *Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra*, Springer-Verlag, New York, 1997.
- M. EVANS, Z. GILULA AND I. GUTTMAN: Latent class analysis of two-way contingency tables by Bayesian methods, *Biometrika* 76 (1989) 557–563.
- 5. H. HIRONAKA: Resolution of singularities of an algebraic variety over a field of characteristic zero I, II, *Ann. of Math.* (2) **79** (1964) 109–203.
- 6. S. LIN, B. STURMFELS AND Z. XU: Marginal likelihood integrals for mixtures of independence models, *J. Mach. Learn. Res.* **10** (2009) 1611–1631.
- 7. S. LIN: Algebraic methods for evaluating integrals in Bayesian statistics, PhD dissertation, Dept. Mathematics, UC Berkeley (2011).
- 8. S. WATANABE: *Algebraic Geometry and Statistical Learning Theory*, Cambridge Monographs on Applied and Computational Mathematics **25**, Cambridge University Press, Cambridge, 2009.

Supplementary

Integral Asymptotics

Singular Learning

Algebraic Geometry

RLCTs

Applications

Desingularization

- Strategy
- Higher Order

The integral Z(N) with $f(x,y)=-\frac{1}{2}\log(1-x^2y^2)$ comes from the coin toss model parametrized by

$$p_1(\omega, t) = \frac{1}{2}t + (1 - t)\omega$$
$$p_2(\omega, t) = \frac{1}{2}t + (1 - t)(1 - \omega)$$

where the Kullback-Leibler function at the distribution (q_1, q_2)

$$K(\omega, t) = q_1 \log \frac{q_1}{p_1(\omega, t)} + q_2 \log \frac{q_2}{p_2(\omega, t)}.$$

The function f(x,y) comes from K(x,y) at $q_1=q_2=1/2$ and substituting $\omega=(1+x)/2, t=1-y$.